
Knowledge-Based Sowtftware Engineering

... (Eds.)
Publisher, 2010
c⃝2010 The authors. All rights reserved

Knowledge-based Compiler with e-TA
for Software Engineering Education

Shun HATTORI a,1 and Hiroyuki KAMEDA a

a School of Computer Science, Tokyo University of Technology

Abstract. Software is an essential infrastructure today. Our societies re-
quire capable human resources who can develop softwares at the high-

est level possible, and various educational institutions such as universi-
ties provide software engineering (programming) education aggressively.
However, those who do not acquire enough programming ability and
also hesitate in programming have been increasing in recent years, even

though they are Computer Science (CS) or Information Technology (IT)
students/graduates. The main reason is that they could not avoid facing
very difficult and unexpectedly massive compile errors with unknown
technical words when they were beginners of programming. Another

reason is that teachers and TAs (Teaching Assistants) cannot always
give timely and appropriate advices to varying knowledge or levels of
learners. This paper proposes a knowledge-dependent compiler with e-
TA (electronic Teaching Agent) for software engineering education, and

shows a prototype of our education-oriented Java compiler to present
not only static compile errors as-is, but also easy-to-understand advice
appropriately and on a timely basis (dynamically) depending on pro-

gramming knowledge of learners who browse the compile errors.

Keywords. Education-oriented Compiler, Knowledge-dependent Compiler,

Java Compiler, Software Engineering Education, Programming Education,
e-TA (electronic Teaching Agent).

Introduction

Today, software is one of the most important social infrastructures. Software de-
pendency of our societies has been going on increasing year by year. For example,
office workers in Japan are no longer able to get anything done without word-
processing softwares such as Microsoft Word and Excel. Also, it is no exaggera-
tion to say that PDF builders such as LATEX and Adobe Acrobat and presenta-
tion softwares such as Microsoft PowerPoint are indispensable for us, researchers.
Our societies require capable human resources who can develop these softwares
at the highest level possible, and various educational institutions such as uni-

1Corresponding Author: Shun HATTORI, School of Computer Science, Tokyo University of
Technology, 1404–1 Katakura, Hachioji, Tokyo 192–0982, Japan; E-mail: hattori@cs.teu.ac.jp.

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

versities provide software engineering (programming) education aggressively. In
Japan, however, those who do not acquire enough programming ability and also
hesitate in programming have been increasing in recent years, even though they
are Computer Science (CS) or Information Technology (IT) students/graduates.
To conquer this problem, we launched a research project of Tangible Software
Engineering Education 2, and have researched and developed various support sys-
tems in software engineering education to meet the needs of the times. In this pa-
per, we propose a knowledge-dependent compiler with e-TA (electronic Teaching
Agent) for not intermediate and advanced program developers but new learners of
programming. And we show a prototype of our education-oriented Java compiler
to present not only static compile errors as-is, but also easy-to-understand advice
appropriately and on a timely basis (dynamically) depending on programming
knowledge and skills of users (learners).

A reason why not a few science and technology students (at least in Japan)
hesitate or are weak in programming is certainly that more young Japanese are
moving away from science and technology. But the main reason is that they could
not avoid facing very difficult and unexpectedly massive compile errors with unac-
quainted English words or technical words and thus have given up learning about
programming knowledge and skills when they were beginners of programming.
Conventional compilers such as javac and gcc are for not programming education
but software development, and are for not beginners of programming but inter-
mediate and advanced developers. Therefore, their error messages ask users for
prior knowledge about programming and the programming language to some ex-
tent. However, because new learners of programming have not enough knowledge
about programming itself as well as programming languages, they cannot easily
be going on acquiring the knowledge without advice of others such as teachers
and TAs (Teaching Assistants) just by using kindless error messages of conven-
tional compilers. Static error messages of conventional compilers for program de-
velopers are dependent on only content of their source code. Such intelligent com-
pilers to present easy-to-understand advice appropriately and on a timely basis
(dynamically) depending on programming knowledge, skills and/or situation of
learners who browse the compile errors for their source code, are not found as far
as we know. The number of error messages for a source code is not rarely much
more than the number of errors embedded in content of the source code, and
several of them cannot give any help to even intermediate and advanced program
developers. This is roughly the state of play in conventional compilers.

Our university, Tokyo University of Technology, offers Java programming in-
troductory classes composed of classroom lectures and exercises to Computer Sci-
ence (CS) freshmen. In every Java programming exercise, for some assignments by
teachers, CS freshmen are instructed to edit their source code by such an editor
as Emacs, to compile their source code by the most conventional Java compiler,
javac [1], on the command line interface (CLI), and to modify and re-compile
their source code if any error. By repeating such a process, they are expected to
gradually acquire knowledge and skills of not only Java programming but also
programming (software engineering) itself.

2http://www.teu.ac.jp/tangible/

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

There is no doubt that the unfriendliness and abstrusity of error messages
by the most primary Java compiler, javac, cause many CS students who hesitate
in programming (at least at our university). To lower this kind of barrier and
decrease those students dropping out, one teacher and four TAs (Teaching Assis-
tants) who are graduate students per classroom provide about 60 undergraduate
students with such supports as deciphering compiler’s error messages for learn-
ers and giving appropriate advice about what wrong in their source code and/or
how to modify their source code. But these human-powered supports have such
limitations as follows:

• if not enough TAs for the number of learners in a classroom, the learners
cannot be given advice appropriately and on a timely basis in case of bursts
of their questions;

• if teachers give TAs not enough guidance about how to advise learners
in advance, the learners cannot be given appropriate and uniform advice,
because not only learners but also TAs (and teachers) have various level
of knowledge and skills of (Java) programming, i.e., some TAs are enough
high-level but others are not;

• some learners, even if stuck in compiler’s error messages, cannot ask a
teacher and/or TAs because of such a personality as shyness of strangers.

From the above-mentioned findings, we need a compiler oriented not soft-
ware development by high-level users but software engineering education for low-
level users, i.e., more intelligent compiler. In this paper, we propose a knowledge-
dependent compiler with e-TA (electronic Teaching Agent) for software engineer-
ing education, and show a prototype of our education-oriented Java compiler, edu-
javac, to present not only static and often difficult-to-understand error messages
by the most primary Java compiler, javac, but also easy-to-understand advice
appropriately and on a timely basis (dynamically) depending on programming
knowledge of learners who browse the compiler’s error messages as if a high-level
teacher or TA were always man-on-man standing at the learners’ side.

Of course, there are other approaches, except our approach of using our pro-
posed education-oriented Java compiler on the CLI, as follows:

• using the other Java compiler as Eclipse Compiler for Java (ECJ) [2], GNU
Compiler for Java (GCJ) [3], and Jikes [4].

• using such a GUI integrated development environment (IDE) as Eclipse and
NetBeans [5] with keyword auto-complete (suggest) and high-level debug
functions etc.;

• using such a programming language for new learners of programming as
Nigari [6,7] and Kotodama [8,9];

• using such a programming (software engineering) environment for novices
as PEN [10,11], Robotran [12], BlueJ [13], and Greenfoot [14].

However, the educational objective of our programming exercises for novices at
our university, is not only to make them capable of editing correct Java source
code all by themselves, but also to let them practice away at typing, get used
to command line interface (CLI), logically modify their source code with the
help of compiler’s error messages, and thus we cannot easily change our assumed

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

programming process for students, which consist of editing their source code by
such an editor as Emacs, compiling their source code by the most conventional
Java compiler, javac, on the CLI, and modifying and re-compiling their source
code if any error. And javac must be the most primary Java compiler, and there
are not a few Java development environments such as Greenfoot which adopt
javac as an internal Java compiler. Therefore, our proposed education-oriented
Java compiler, edujavac, tries to generate advice for javac’s error messages as
appropriately and timely as possible.

1. Problems of Conventional Java Compilers and Programming Exercise Forms
in Software Engineering Education

This section discusses problems of using the most conventional Java compiler,
javac, in software engineering (programming) education and problems of pro-
gramming exercise forms at our university, and extracts the requirements of our
proposed education-oriented Java compiler, edujavac.

1.1. Problems of Java Compiler “javac”

The below “HJW.java (model answer)” is one of the most typical Java introduc-
tory source codes. At our university, Computer Science (CS) freshmen are first
instructed to edit it without modification by such an editor as Emacs, and to
compile it by the most primary Java compiler, javac, on the CLI.

HJW.java (model answer)� �
class HJW {

public static void main(String[] args) {

System.out.println("Hello Java World");

}

}� �
For such an assignment to type the model answer without thinking and modi-

fication, not a few CS students make mistakes. For example, a new learner of Java
programming might make a typo in the 1st line, the reserved keyword “class”
to “clas”, as shown in “HJW.java (typo)”. In fact, we often encounter many
typos of English reserved keywords in our programming exercises, because many
Japanese students are not good at English and dislike English words.

HJW.java (typo)� �
clas HJW {

public static void main(String[] args) {

System.out.println("Hello Java World");

}

}� �

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

Of course, the new learner himself intended to type the model answer without
modification, and would make no question of success of compiling his typed source
code. However, the most primary Java compiler, javac (in JDK1.6), offers the
following 3 error messages for his source code with a typo “HJW.java (typo)”,
and thus he would be surprised at his unexpected error messages and be at odds
as to how to modify them.

javac HJW.java (typo)� �
HJW.java:1: class, interface, or enum expected

clas HJW {

^

HJW.java:2: class, interface, or enum expected

public static void main(String[] args) {

^

HJW.java:4: class, interface, or enum expected

}

^

3 errors� �
If such error messages by the most primary Java compiler, javac, were easy

for low-level beginners as well as high-level developers to understand and modify
them all alone, there would be no problem. But in fact, there are not a few CS
students who get stuck in the error messages, i.e., they are not enough easy for
at least new learners to understand and modify them all alone. In this case, the
above-mentioned 3 error messages by the most conventional Java compiler, javac,
seem to have the following problems.

Novices for Java programming unexpectedly encounter such high-level (not
entry-level) reserved keywords as “interface” and “enum” in every error message
even while tackling such an entry-level assignment to type the most introductory
Java source code “HJW.java (model answer)” without modification. They must
have not yet learned such high-level reserved keywords. Facing unknown and dif-
ficult concepts could be huge barriers (stress) for new learners. Therefore, our
proposed education-oriented Java compiler needs to mask unknown technical key-
words in its error messages depending on knowledge of learners who browse the
compile errors, or to supplement them with some additional explanation and/or
by referring textbooks and/or Web pages.

And the multiple error messages do not show which error message to be
first tackled and how to make a tangible modification. Rather, offering only the
1st error message is informative. The other error messages are not helpful but
confusing, because there is a typo in the 1st line of his source code “HJW.java
(typo)” and the 2nd or 3rd error message points that there are some error in the
2nd or 4th line respectively. Offering such confusing error messages that point the
location in which there is no error and offering unexpectedly many error messages
(much more than the number of errors embedded actually) is very unfriendly
for new learners. Therefore, our proposed education-oriented Java compiler needs
to mask such confusing error messages and to reduce its error messages to the
number of errors embedded actually.

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

In this case of “HJW.java (typo)”, a human teacher or TA would browse a
model answer, a student’s source code, and compiler’s error messages, search for
the error cause which is a typo of mistyping “class” to “clas” in the 1st line,
and give “First, tackle the 1st error message.” as the first advice to students.
Subsequently, he would give “There is a typo anywhere.”, “There is a typo in
the 1st line.”, “Replace clas with something in the 1st line.”, and “Replace clas
with class in the 1st line.” as the last and most specific adivce to students.

Another typical error for the most introductory Java source code “HJW.java
(model answer)” is forgetting to close a block by “}” as shown in “HJW.java
(not-closed by })”. Not just new learners but any programmers often make corre-
spondence mistakes of “{” and “}”, and it is also not easy for teachers and TAs
to modify them quickly. In addition, most new learners often do not indent.

HJW.java (not-closed by })� �
class HJW {

public static void main(String[] args) {

System.out.println("Hello Java World");

}

� �
The most primary Java compiler, javac (in JDK1.6), offers the following error

message for the above source code “HJW.java (not-closed by })”.

javac HJW.java (not-closed by })� �
HJW.java:4: reached end of file while parsing

}

^

1 error� �
This error message, especially a technical word “parsing” is cryptic and not

helpful for new learners. In this case, a human teacher or TA had better give
“First, indent properly.” as more educational advice before giving “Insert } in the
5th line.” as the last and most specific advice to students.

1.2. Problems of Programming Exercise Forms

Our university is entered by almost 600 Computer Science (CS) freshmen with
very various levels of knowledge and skills of computer literacy and program-
ming every year, and offers Java programming introductory classes composed of
classroom lectures and exercises to the CS freshmen. While a teacher supports
about 120 undergraduate students by using slides and/or textbooks per classroom
in programming lectures, one teacher and four TAs (Teaching Assistants) who
are graduate students support about 60 undergraduate students per classroom
in programming exercises as shown in Figure 1. In every programming exercise,
for some assignments given by a teacher, CS freshmen edit their source code by
such an editor as Emacs, (re-)compile their source code by the most conventional

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

Java compiler, javac, on the command line interface (CLI), and finally have their
source code checked by a TA with such a portable terminal as PSP or NDS. By
repeating such a process, they are expected to gradually acquire knowledge and
skills of not only Java programming but also programming (software engineering)
itself. The current form of programming exercises has the following problems:

1. because the number of TAs are much less than the nmber of learners in a
classroom (e.g., 4 + 1 ≪ 60), the learners cannot be always given advice
appropriately and on a timely basis in case of bursts of their questions;

2. if teachers give TAs not enough guidance about how to advise learners
in advance, the learners cannot be given appropriate and uniform advice,
rather can be given wrong advice, because not only learners but also TAs
(and teachers) have various level of knowledge and skills of (Java) pro-
gramming, i.e., some TAs are enough high-level but others are not;

3. some learners, even if stuck in compiler’s error messages, cannot ask a
teacher and/or TAs because of such a personality as shyness of strangers
and would leave them unsolved.

One approach to solve the current problems is to increase TAs as shown in
Figure 2. It seems to be one ideal that learners can be always supported man-
on-man by increasing TAs to the number of learners. Certainly, this approach
would solve the 1st current problem. However, the other current problems cannot
be solved. Rather, this approach would confound the 2nd current problem, i.e.,
becoming more difficult to give all TAs enough guidance about how to advise
learners in advance, and cause the new problem, i.e., increasing personal costs.

Our proposed education-oriented Java compiler with knowledge-dependent e-
TA (electronic Teaching Agent) can realize one ideal programming exercise form
as shown in Figure 3 that learners can be always supported man-to-man by a
computer-program e-TA instead of human TAs, i.e., without increasing TAs (per-
sonal costs), rather with eliminating some or all TAs. Our proposed education-

L L L L L

L L L LL …

TA TA TA TA

T

L L L L LL

L

T: Teacher

TA: Teaching Assistant

L: Learner

Figure 1. Exercise Form (Current).

L L L L L

L L L LL …

T

L L L L LL

L

T: Teacher

TA: Teaching Assistant

L: Learner

TA TA TA TATA

…

Figure 2. Exercise Form (Increase of TAs).

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

oriented Java compiler with e-TA requires such a new cost that each teacher spec-
ifies how to advise his students in a computer-understandable form in advance
just as (rather instead of) giving TAs guidance about how to advise his students.

2. Design of Education-oriented Compiler

We now implement a prototype of education-oriented Java compiler, edujavac, in
software engineering education for CS freshmen at our university. But this section
describes a design of our proposed education-oriented compiler, in as general as
possible regardless of our targeted programming language, Java, and various local
requirements in the first year programming education at our university.

2.1. Objectives

Most of conventional compilers are basically designed for enough high-level ex-
perts of programming, and thus their error messages tend to be very difficult for
learners of programming to understand (at least without training wheels). Unlike
such conventional compilers, our proposed education-oriented compiler is designed
for their neglected learners of programming, especially low-level new learners. It
is probably fair to say that in the near future, anybody learns about program-
ming languages to write a computer program for his wanted tasks on his own, like
English as a language for world-wide communication. Therefore, we are in des-
perate need of a universal compiler whose error messages are easy-to-understand
for anybody with any level of knowledge and skills of programming.

Not to overstress new learners of programming by difficult-to-understand
compiler’s error messages and/or human-to-human communication such as
question-and-answering, not a human teacher or TA (Teaching Assistant) but a
computer e-TA (electronic Teaching Agent) of our proposed education-oriented

L L L L L

L L L LL …

T

L L L L LL

L

T: Teacher

TA: Teaching Assistant

L: Learner

e-TA: e-Teaching Agent

eTA eTA eTA eTA eTA eTA

eTA eTAeTAeTAeTA

eTA eTA eTA eTA eTA eTA

TA TA TA TA

Figure 3. Programming Exercise Form (with e-TA).

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

compiler provides the learners with such supports as deciphering compiler’s er-
ror messages for learners and giving appropriate advice about what wrong in
their source code and/or how to modify their source code. The motivation of our
proposed education-oriented compiler is not the optimal generation of an object
code for a user-inputted source code. So, the conversion from a source code to
an object code is entrusted to the existing compilers, and the e-TA of our pro-
posed education-oriented compiler is responsible for the generation of easy-to-
understand advice from compiler’s error messages as appropriately and timely as
possible. Note that the final goal of software engineering (programming) educa-
tion is to allow learners to modify their source code on their own by using not
our proposed e-TA’s kind advice but the conventional compiler’s unkind error
messages. Therefore, excessive nurturing, e.g., always offering learners the most
easy-to-understand (concrete and direct) advice like the answer of the optimal
modification, is not good for the education (of course, may be good for the fastest
development).

2.2. Requirements

The following requirements of (e-TA of) our proposed education-oriented compiler
can be extracted by looking at the process that human teachers and TAs support
their students in programming exercises.

• Learner-dependency:
In programming exercises, a human teacher or TA seems to offer a tar-
geted student with appropriate and timely advice based on the targeted
student’s level of knowledge and skills of programming inferred by observ-
ing the targeted student’s action history (e.g., transition of source code)
and error tendency from behind, and/or asking the targeted student addi-
tional questions arbitrarily (if necessary, referring the example source code
of the targeted student’s tackling assignment).
Therefore, for a learner, our proposed e-TA should generate appropriate and
timely advice dependent on the learner’s level of knowledge (e.g., reserved
keywords and technical terms) and skills of programming.

• Teacher-dependency:
Before programming exercises, a human teacher had better give his TAs
enough guidance about how to advise his students, e.g., timing control
and kindness control. For example, a human teacher would like his TAs to
advise his students a little more kindly if stuck in more than 15 minutes
or if stuck in spite of much thinking and/or trying to modify on their own,
and more kindly from 30 minutes to go in an exercise (total 90mins) to
allow his students to work out their quick-fix source code. In addition,
a human teacher would like his TAs to mask or supplement a student’s
unknown technical keywords in the compiler’s error messages for his source
code, what explanation and/or what textbooks and/or Web pages a human
teacher would like his TAs to supplement each technical keyword with.
Therefore, for a teacher, our proposed e-TA should generate appropriate
and timely advice according to the teacher’s educational policies about
timing, kindness, and programming knowledge and skills to teach.

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

2.3. Basic Architecture

Figure 4 gives an overview of our education-oriented compiler with e-TA who
generates appropriate and timely advice to error messages by compiling a learner’s
source code for a teacher’s assignment based on Teacher and Learner models.

Existing Compiler

(javac etc.)
e-TA

(e-Teaching Agent)

Teacher

model

Learner

model

Source

code

Object

code

Error

messages

Advice

Education-oriented Compiler

eTA

T

L

TA

eTA

Figure 4. Overview of Education-oriented Compiler with e-TA.

3. Prototype of Knowledge-dependent Java Compiler with e-TA

As an implementation of our proposed education-oriented Java compiler, edu-
javac, in software engineering (programming) education for CS freshmen at our
university, this section shows a prototype of knowledge-dependent Java compiler
with e-TA to present not only static error messages by the existing Java compiler,
javac, but also easy-to-understand advice appropriately and on a timely basis
(dynamically) depending on programming knowledge of learners.

Each user (learner) has a knowledge directory, know-dir, on his local com-
puter. Technical keywords with high frequency to some extent extracted from
electronic documents in the user’s knowledge directory are identified as his well-
known keywords. Unknown technical keywords in its error messages are masked
depending on the user’s knowledge (i.e., electronic documents in the knowledge
directory), or are supplemented with some additional explanation and by referring
textbooks and Web pages. In this prototype, only interval of updating content of
e-TA’s advice can be specified by each teacher.

The most primary Java compiler, javac, offers the quite same error messages
indefinitely unless the source code inputted by the user is modified as below.

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

javac HJW.java (typo)� �
> javac HJW.java

HJW.java:1: class, interface, or enum expected

clas HJW {

^

HJW.java:2: class, interface, or enum expected

public static void main(String[] args) {

^

HJW.java:4: class, interface, or enum expected

}

^

3 errors

> javac HJW.java

HJW.java:1: class, interface, or enum expected

clas HJW {

^

HJW.java:2: class, interface, or enum expected

public static void main(String[] args) {

^

HJW.java:4: class, interface, or enum expected

}

^

3 errors� �
edujavac HJW.java (typo) [mask except know-dir={“class”}]� �
> edujavac HJW.java

HJW.java:1: class expected

clas HJW {

^

HJW.java:2: class expected

public static void main(String[] args) {

^

HJW.java:4: class expected

}

^

3 errors

> edujavac HJW.java

HJW.java:1: class expected

clas HJW {

^

> edujavac HJW.java

HJW.java:1: there is a typo anywhere

> edujavac HJW.java

HJW.java:1: there is a typo in the line no.1

> edujavac HJW.java

HJW.java:1: replace clas with something in the line no.1

> edujavac HJW.java

HJW.java:1: replace clas with class in the line no.1� �

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

Our knowledge-dependent Java compiler with e-TA masks the other technical
keywords than a learner’s know-dir = {“class”} as above, while it supplements
them with their explanations as his teacher’s knowledge to teach as below.

edujavac HJW.java (typo) [supplement except know-dir={“class”}]� �
> edujavac HJW.java

HJW.java:1: class, interface, or enum expected

clas HJW {

^

HJW.java:2: class, interface, or enum expected

public static void main(String[] args) {

^

HJW.java:4: class, interface, or enum expected

}

^

3 errors

interface is an abstract type that ...

TEXT: Objects First with Java, pp.328

URL: http://en.wikipedia.org/wiki/Interface_(Java)

enum is a data type that ...

TEXT: Objects First with Java, pp.233

URL: http://en.wikipedia.org/wiki/Enumerated_type#Java

> edujavac HJW.java

HJW.java:1: class, interface, or enum expected

clas HJW {

^

interface is an abstract type that ...

TEXT: Objects First with Java, pp.328

URL: http://en.wikipedia.org/wiki/Interface_(Java)

enum is a data type that ...

TEXT: Objects First with Java, pp.233

URL: http://en.wikipedia.org/wiki/Enumerated_type#Java

> edujavac HJW.java

HJW.java:1: class expected

clas HJW {

^

> edujavac HJW.java

HJW.java:?: there is a typo anywhere

> edujavac HJW.java

HJW.java:1: there is a typo in the line no.1

> edujavac HJW.java

HJW.java:1: replace clas with something in the line no.1

> edujavac HJW.java

HJW.java:1: replace clas with class in the line no.1� �

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

edujavac HJW.java (typo) [mask except know-dir={“class”, “interface”}]� �
> edujavac HJW.java

HJW.java:1: class or interface expected

clas HJW {

^

HJW.java:2: class or interface expected

public static void main(String[] args) {

^

HJW.java:4: class or interface expected

}

^

3 errors

> edujavac HJW.java

HJW.java:1: class or interface expected

clas HJW {

^

> edujavac HJW.java

HJW.java:1: class expected

clas HJW {

^� �
edujavac HJW.java (typo) [supplement except know-dir={“class”, “interface”}]� �
> edujavac HJW.java

HJW.java:1: class, interface, or enum expected

clas HJW {

^

HJW.java:2: class, interface, or enum expected

public static void main(String[] args) {

^

HJW.java:4: class, interface, or enum expected

}

^

3 errors

enum is a data type that ...

TEXT: Objects First with Java, pp.233

URL: http://en.wikipedia.org/wiki/Enumerated_type#Java

> edujavac HJW.java

HJW.java:1: class, interface, or enum expected

clas HJW {

^

enum is a data type that ...

TEXT: Objects First with Java, pp.233

URL: http://en.wikipedia.org/wiki/Enumerated_type#Java

> edujavac HJW.java

HJW.java:1: class expected

clas HJW {

^� �

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

As above, our knowledge-dependent Java compiler with e-TA as an implemen-
tation of our proposed education-oriented Java compiler, edujavac, offers more
easy-to-understand advice about the source code with a typo, HJW.java (typo),
dependent on known technical keywords, know-dir, as knowledge of a learner and
policies on how to support, e.g., mask/supplement, as knowledge of his teacher.

As below, our knowledge-dependent Java compiler with e-TA offers the 1st
advice about the source code with the lack of “}”, HJW.java (not-closed by }),
by supplementing the javac’s original error messages with teacher-specified expla-
nations of a learner’s unknown technical word “parsing”. Until she indents her
source code properly by using such an editor as Emacs, our e-TA continues to
give the same advice “indent properly” before giving “Insert } in the line no.5”
as the last and most specific advice to her.

edujavac HJW.java (not-closed by }) [supplement except know-dir={“class”}]� �
> edujavac HJW.java

HJW.java:4: reached end of file while parsing

}

^

1 error

parsing is the process of analyzing a text ...

TEXT: none

URL: http://en.wikipedia.org/wiki/Parsing

> edujavac HJW.java

HJW.java:?: indent properly

indent is used to format source code to improve readability ...

TEXT: Objects First with Java, pp.494

URL: http://en.wikipedia.org/wiki/Indent_style

> edujavac HJW.java

HJW.java:?: indent properly

indent is used to format source code to improve readability ...

TEXT: Objects First with Java, pp.494

URL: http://en.wikipedia.org/wiki/Indent_style

> emacs HJW.java

> more HJW.java

class HJW {

public static void main(String[] args) {

System.out.println("Hello Java World");

}

> edujavac HJW.java

HJW.java:4: insert } in the line no.5

� �

S. HATTORI et al. / Knowledge-based Compiler with e-TA for Software Engineering Education

Conclusions

In this paper, we have proposed a knowledge-dependent compiler with e-TA (elec-
tronic Teaching Agent) for software engineering education, and have shown a
prototype of our education-oriented Java compiler to present not only static and
often difficult-to-understand error messages by the most primary Java compiler,
javac, but also easy-to-understand advice appropriately and on a timely basis
(dynamically) depending on programming knowledge of learners who browse the
compiler’s error messages as if a high-level teacher or TA were always man-on-man
standing at the learners’ side.

In the near future, we try to evaluate our proposed education-oriented Java
compiler, edujavac, by applying it to practical Java programming introductory
classes for Computer Science (CS) freshmen at our university.

Acknowledgment

This work was supported in part by Tangible Software Engineering Education3

(Project Leader: Taichi Nakamura, Tokyo University of Technology).

References

[1] Wikipedia - javac. http://en.wikipedia.org/wiki/Javac (2010).
[2] Eclipse. http://www.eclipse.org/ (2010).
[3] GCJ: The GNU Compiler for Java. http://gcc.gnu.org/java/ (2010).
[4] Jikes’ Home. http://jikes.sourceforge.net/ (2010).

[5] Welcome to NetBeans. http://www.netbeans.org/ (2010).
[6] Nigari System. http://www2.eplang.jp/nigari/ (2010).
[7] S. Cho, M. Kai, A. Kawai, T. Hino, S. Maeshima, and K. Kakehi. Nigari - A Programming

Language and Environment for the First Stage, Leading to Java World. Transactions

of Information Processing Society of Japan (IPSJ), Vol.45, No.SIG9(PRO22), pp.25–46
(2004).

[8] Kotodama. http://garuda.crew.sfc.keio.ac.jp/kotodamaCommunity/ (2010).

[9] A. Megumi, K. Okada, and H. Ohiwa. The programming education in elementary school
using music box as a theme with using programming system “Kotodama on Squeak”.
IPSJ SIG Technical Reports, Vol.2007, No.12(CE-88), pp.69–75 (2007).

[10] PEN (Programming Environment for Novices). http://grape.media.osaka-cu.ac.jp/

PEN/ (2010).
[11] T. Nishida, A. Harada, R. Nakamura, Y. Miyamoto, and T. Matsuura. Implementation

and Evaluation of PEN: The Programming Environment for Novices. Transactions of
Information Processing Society of Japan (IPSJ), Vol.48, No.8, pp.2736–2747 (2007).

[12] R.M. Meyer and D.T. Burhans. Robotran: A Programming Environment for Novices Us-
ing LEGO Mindstorms Robots. Proceedings of the 20th International Florida Artificial
Intelligence Research Society (FLAIRS) Conference, pp.321–326 (2007).

[13] BlueJ - Teaching Java - Learning Java. http://www.bluej.org/ (2010).

[14] Greenfoot - The Java Object World. http://www.greenfoot.org/ (2010).

3http://www.teu.ac.jp/tangible/

