
Education-oriented Java Compiler with e-TA

Shun HATTORI and Hiroyuki KAMEDA

School of Computer Science, Tokyo University of Technology
1404–1 Katakura, Hachioji, Tokyo 192–0982, Japan

hattori@cs.teu.ac.jp

Abstract

In recent years, those who do not acquire enough pro-
gramming ability and also hesitate in programming
have been increasing, even though they are Computer
Science students/graduates. One of the major reasons
is that they could not avoid facing very difficult and un-
expectedly massive compile errors with unknown tech-
nical words when they were beginners of programming.
This paper proposes an education-oriented compiler
with e-TA (electronic Teaching Agent) for program-
ming education, and shows an implementation of our
education-oriented Java compiler to present not only
static compile errors as-is but also easy-to-understand
advice appropriately and on a timely basis (dynami-
cally) depending on programming knowledge of learn-
ers who browse the compile errors as if at least a high-
level human teacher or TA were always man-on-man
standing at the learners’ side.

Keywords: Education-Oriented Compiler, e-TA
(electronic Teaching Agent), User-Adaptive Compiler,
Proactive Compiler, Programming Education.

1 Introduction

Today, software is one of the most important social in-
frastructures. Our societies require capable human re-
sources who can develop software at the highest level,
and various educational institutions such as universi-
ties provide software engineering (programming) edu-
cation aggressively. In Japan, however, those who do
not acquire enough programming ability and also hes-
itate in programming have been increasing in recent
years, even though they are CS (Computer Science) or
IT (Information Technology) students/graduates.

One of the major reasons is that they could not avoid
facing very difficult and unexpectedly massive compile
errors with unacquainted English words or technical
words and thus have given up learning about program-
ming knowledge and skills when they were beginners of
programming. Conventional compilers such as javac [2]
are for not programming education but software devel-
opment, and are for not beginners of programming but
intermediate and advanced developers. Another rea-
son is that such human-powered supports by a teacher
and a few TAs (Teaching Assistants) as deciphering

compiler’s error messages for learners and giving ap-
propriate advice timely have several limitations in in-
troductory programming exercises [1].

In this paper, we propose an education-oriented com-
piler with user-adaptive and active e-TA (electronic
Teaching Agent) for introductory programming exer-
cises, and describe an implementation of our education-
oriented Java compiler to present not only static and
often difficult-to-understand error messages by the
most primary Java compiler, javac, but also easy-to-
understand advice appropriately and on a timely basis
(dynamically) depending on programming knowledge
of learners who browse the compiler’s error messages
as if a high-level teacher or TA were always man-on-
man standing at the learners’ side.

Of course, there are other approaches except our ap-
proach of using our proposed education-oriented Java
compiler on the CLI (Command Line Interface) as
follows: using the other Java compiler as Jikes [3],
GNU Compiler for Java (GCJ) [4], and Eclipse Com-
piler for Java (ECJ) [5]; using such a GUI integrated
development environment (IDE) as Ecilpse and Net-
Beans [6] with keyword auto-complete (suggest) and
high-level debug functions etc.; using such a program-
ming language for new learners of programming as Ni-
gari [7, 8, 9] and Kotodama [10, 11, 12]; using such
a programming (software engineering) environment for
novices as PEN [13, 14, 15] and Robotran [16].

However, the educational objective of our program-
ming exercises for novices at our university is not only
to make them capable of editing correct Java source
code all by themselves, but also to let them practice
away at typing, get used to the CLI, logically modify
their source code with the help of compiler’s error mes-
sages, and we cannot easily change our assumed pro-
gramming process for students, which consist of editing
their source code by such an editor as Emacs, compil-
ing their source code by the most conventional Java
compiler, javac, on the CLI, and modifying and re-
compiling their source code if any error. And javac
must be the most primary Java compiler, and there
are not a few Java development environments such as
Greenfoot [17] which adopt javac as an internal Java
compiler. Therefore, our proposed education-oriented
Java compiler tries to generate advice for javac’s error
messages as appropriately and timely as possible.

1

2 Problems in Introductory
Java Programming Exercises

This section discusses problems of using the most con-
ventional Java compiler, javac [2], in introductory Java
programming education, and extracts the requirements
of our proposed education-oriented compiler with e-TA
(electronic Teaching Agent).

The below “HJW.java (model answer)” is one of the
most typical Java introductory source codes. At our
university, Computer Science (CS) freshmen are first
instructed to edit it without modification by such an
editor as Emacs, and to compile it by the most primary
Java compiler, javac, on the CLI.

HJW.java (model answer)� �
class HJW {

public static void main(String[] args) {

System.out.println("Hello Java World");

}

}� �
For such an assignment to type the model answer

without thinking and modification, not a few CS stu-
dents make mistakes. For example, a new learner of
Java programming might make a typo in the 1st line,
the reserved keyword “class” to “clas”, as shown in
“HJW.java (typo)”. In fact, we often encounter many
typos of English reserved keywords in our program-
ming exercises, because many Japanese students are
not good at English and dislike English words.

HJW.java (typo)� �
clas HJW {

public static void main(String[] args) {

System.out.println("Hello Java World");

}

}� �
Of course, the new learner himself intended to type

the model answer without modification, and would
make no question of success of compiling his typed
source code. However, the primary Java compiler,
javac (in JDK1.6), offers the following 3 error messages
for his source code with a typo, and thus he would be
surprised at his unexpected error messages and be at
odds as to how to modify them.

javac HJW.java (typo)� �
HJW.java:1: class, interface, or enum expected

clas HJW {

^

HJW.java:2: class, interface, or enum expected

public static void main(String[] args) {

^

HJW.java:4: class, interface, or enum expected

}

^

3 errors� �
The above error messages by the conventional Java

compiler, javac, seem to have the following problems.
Novices for Java programming unexpectedly encounter
such high-level (not entry-level) reserved keywords as
“interface” and “enum” in every error message even
while tackling such an entry-level assignment to type
the most introductory Java source code without mod-
ification. They must have not yet learned such high-
level reserved keywords. Facing unknown and difficult

concepts could be huge barriers (stress) for new learn-
ers. Therefore, our proposed education-oriented Java
compiler needs to mask unknown technical keywords in
its error messages depending on knowledge of learners
who browse the compile errors, or to supplement them
with some additional explanation and/or by referring
textbooks and/or Web pages.

And the multiple error messages do not show which
error message to be first tackled and how to make a
tangible modification. Rather, offering only the 1st er-
ror message is informative. The other error messages
are not helpful but harmful, because there is a typo in
the 1st line of his source code and the 2nd or 3rd error
message points that there are some error in the 2nd or
4th line respectively. Offering such harmful error mes-
sages that point the location in which there is no error
and offering unexpectedly many error messages (much
more than the number of errors embedded actually) is
very unfriendly for new learners. Therefore, our pro-
posed education-oriented Java compiler needs to mask
such harmful error messages and to reduce its error
messages to the number of errors embedded actually.

Another error for the most introductory Java source
code is forgetting to close a block by “}” as shown in
“HJW.java (missing of })”. Not just new learners but
any programmers often make correspondence mistakes
of “{” and “}”, and it is also not easy for teachers and
TAs to modify them quickly. In addition, most new
learners often do not indent properly.

HJW.java (missing of })� �
class HJW {

public static void main(String[] args) {

System.out.println("Hello Java World");

}

� �
The most primary Java compiler, javac (in JDK1.6),

offers the following error message for the above source
code “HJW.java (missing of })”.

javac HJW.java (missing of })� �
HJW.java:4: reached end of file while parsing

}

^

1 error� �
This error message, especially a technical word

“parsing” is cryptic and not helpful for new learners.
In this case, a human teacher or TA had better give
“Indent properly.” as more educational advice before
giving “Insert } in the 5th line.” as the last and most
specific advice to students.

The above-mentioned problem of the primary Java
compiler is difficulty for users, especially new learners,
to understand its compile error messages, i.e., “disabil-
ity of user-adaptiveness”. Another problem of the pri-
mary Java compiler is passivity for users, especially
some learners who cannot ask a human teacher or TA
because of such a personality as shyness of strangers
even if stuck in compiler’s error messages, i.e., “disabil-
ity of activeness”. Therefore, our proposed education-
oriented Java compiler with e-TA should have both
“user-adaptiveness” and “activeness”.

2

3 Design of Education-oriented
Java Compiler with e-TA

This section describes a design of our proposed
education-oriented Java compiler, edujavac, in pro-
gramming education for novices, as a 1st step to the
universal compiler whose error messages are easy-to-
understand for anybody with any level of knowledge
and skills of programming. Not to overstress new learn-
ers of programming by difficult-to-understand com-
piler’s error messages and/or human-to-human com-
munication such as question-and-answering, not a hu-
man teacher or TA but a computer e-TA (electronic
Teaching Agent) of our proposed education-oriented
compiler provides the learners with such supports as
deciphering compiler’s error messages for learners and
giving appropriate advice about what wrong in their
source code and/or how to modify their source code.

3.1 Requirements

Our proposed education-oriented Java compiler with
e-TA should have the following requirements.

1. User-Adaptiveness

• Learner-Adaptiveness: In programming
exercises, a human teacher or TA seems to
offer a targeted student with appropriate and
timely advice based on the targeted student’s
level of knowledge and skills of programming
inferred by observing the targeted student’s
action history (e.g., transition of source code)
and error tendency from behind, and/or ask-
ing the targeted student additional questions
arbitrarily (if necessary, referring the exam-
ple source code of the targeted student’s tack-
ling assignment. Therefore, for a learner, our
proposed e-TA should generate appropriate
and timely advice dependent on the learner’s
level of knowledge (e.g., reserved keywords
and technical terms) of programming.

• Teacher-Adaptiveness: Before program-
ming exercises, a human teacher had better
give his TAs enough guidance about how to
advise his students, e.g., timing control and
kindness control. Therefore, for a teacher,
our proposed e-TA should generate appro-
priate and timely advice according to the
teacher’s educational policies about timing,
kindness, and programming knowledge and
skills to teach.

2. Activeness: Some learners who cannot ask a hu-
man teacher or TA because of such a personality
as shyness of strangers even if stuck in compiler’s
error messages and would leave them unsolved.
Therefore, e-TA should not reactively but proac-
tively advise shy learners if necessary without their
explicit search of the other’s advice.

3.2 Basic Architecture

Figure 1 gives an overview of our proposed education-
oriented compiler with e-TA who generates appropriate
and timely advice to error messages by compiling a
learner’s source code for a teacher’s assignment based
on Learner and Teacher models.

Each learner has a knowledge directory, know-dir,
on his local computer as her Learner model. Technical
keywords with high frequency to some extent extracted
from electronic documents in the learner’s knowledge
directory are identified as his well-known keywords.
Unknown technical keywords in its error messages are
masked depending on the user’s knowledge (i.e., elec-
tronic documents in the knowledge directory), or are
supplemented with some additional explanation and by
referring textbooks and Web pages. Whether to mask
or supplement them for each learner and what to refer
are specified in advance and can be always switched by
each teacher as his Teacher model.

Existing Compiler

(javac etc.)
e-TA

(e-Teaching Agent)

Teacher

model

Learner

model

Source

code

Object

code

Error

messages

Advice

Education-oriented Compiler

eTA

T

L

TA

eTA

Figure 1: Education-oriented Compiler with e-TA.

3.3 Advice Generation

First, our e-TA finds the most effective (but maybe the
least educational) method to modify a targeted source
code with errors by referring its original error messages
of the most conventional Java compiler, javac.

In the case of generating the most effective modi-
fication method to the javac’s 1st error message for
“HJW.java (typo)” in Section 2, e-TA collects the fol-
lowing 6 kinds of modification candidates by inferring
“insert” or “replace” as its operation from a pattern
“expected” and extracting its keyword and location,
and selects one based on the number of re-compile er-
rors after applying each modification candidate:

(insert, 1, 1, “class”) 3 → 1 error
(insert, 1, 1, “interface”) 3 → 1 error
(insert, 1, 1, “enum”) 3 → 2 errors
(replace, 1, 1, “class”) 3 → 0 error
(replace, 1, 1, “interface”) 3 → 2 errors
(replace, 1, 1, “enum”) 3 → 4 errors

Next, our e-TA generates a sequence of advices by
rule-based interpolating between the javac’s error mes-
sage(s) and the most effective modification method.

3

4 Demos of Education-oriented
Java Compiler with e-TA

As an implementation of our proposed education-
oriented Java compiler, edujavac, in programming edu-
cation, this section describes a prototype of knowledge-
dependent Java compiler with reactive or proactive
e-TA to present not only static error messages by
the existing Java compiler, javac, but also easy-to-
understand advice appropriately and on a timely basis
(dynamically) depending on programming knowledge
of learners who browse the compiler’s error messages.
The current prototype can deal with a typo, missing of
“}” or “)”, and not-found symbol as a part of various
kinds of compile errors.

4.1 Advice Examples of Reactive e-TA

The primary Java compiler, javac, offers the quite
same error messages indefinitely unless the inputted
source code is modified as shown in Section 2. Mean-
while, our proposed education-oriented Java compiler,
edujavac, with reactive e-TA offers the following se-
quence of advices about the source code with a typo,
“HJW.java (typo)”, to the learner with known techni-
cal keyword(s), know-dir={“class”}.

edujavac HJW.java (typo) with Reactive e-TA� �
[mask except know-dir={“class”}]

> edujavac HJW.java

HJW.java:1: class expected

clas HJW {

^

HJW.java:2: class expected

public static void main(String[] args) {

^

HJW.java:4: class expected

}

^

3 errors

> edujavac HJW.java

HJW.java:1: class expected

clas HJW {

^

> edujavac HJW.java

HJW.java:1: class expected

clas HJW {

^

> edujavac HJW.java

HJW.java:1: there is a typo anywhere

> edujavac HJW.java

HJW.java:1: there is a typo in the line no.1

> edujavac HJW.java

HJW.java:1: replace clas with something in the...

line no.1

> edujavac HJW.java

HJW.java:1: replace clas with class in the line no.1� �
For the 1st/2nd edujavac command by the learner,

e-TA passively offers the error message(s) in which his
unknown technical keywords such as “interface” and
“enum” are masked not to overstress the learner by

difficult-to-understand error messages. For the 3rd
edujavac command, e-TA passively offers the same er-
ror message as for the 2nd one because the interval be-
tween the 2nd and 3rd edujavac commands is shorter
than the teacher’s specified interval of updating con-
tent of e-TA’s advices.

Our edujavac with e-TA masks the other techni-
cal keywords than a learner’s know-dir = {“class”} as
above, while it supplements them with their explana-
tions as his teacher’s knowledge to teach as below.

edujavac HJW.java (typo) with Reactive e-TA� �
[supplement except know-dir={“class”}]

> edujavac HJW.java

HJW.java:1: class, interface or enum expected

clas HJW {

^

HJW.java:2: class, interface or enum expected

public static void main(String[] args) {

^

HJW.java:4: class, interface or enum expected

}

^

3 errors

interface is an abstract type that ...

TEXT: Objects First with Java, pp.328

URL: http://en.wikipedia.org/wiki/Interface_(Java)

enum is a data type that ...

TEXT: Objects First with Java, pp.233

URL: http://en.wikipedia.org/wiki/Enumerated_type

> edujavac HJW.java

HJW.java:1: class, interface or enum expected

clas HJW {

^

interface is an abstract type that ...

TEXT: Objects First with Java, pp.328

URL: http://en.wikipedia.org/wiki/Interface_(Java)

enum is a data type that ...

TEXT: Objects First with Java, pp.233

URL: http://en.wikipedia.org/wiki/Enumerated_type

> edujavac HJW.java

HJW.java:1: class expected

clas HJW {

^

> edujavac HJW.java

HJW.java:?: there is a typo anywhere

> edujavac HJW.java

HJW.java:1: there is a typo in the line no.1

> edujavac HJW.java

HJW.java:1: replace clas with something in the...

line no.1

> edujavac HJW.java

HJW.java:1: replace clas with class in the line no.1� �
As below, our edujavac with reactive e-TA offers

more easy-to-understand and varied advices about
the quite same source code with a typo, “HJW.java
(typo)”, dependent on known technical keywords,
know-dir, as knowledge of a learner and policies on how
to support, e.g., mask/supplement and timing control,
as knowledge of her teacher.

4

edujavac HJW.java (typo) with Reactive e-TA� �
[mask except know-dir={“class”, “interface”}]

> edujavac HJW.java

HJW.java:1: class or interface expected

clas HJW {

^

HJW.java:2: class or interface expected

public static void main(String[] args) {

^

HJW.java:4: class or interface expected

}

^

3 errors

> edujavac HJW.java

HJW.java:1: class or interface expected

clas HJW {

^

> edujavac HJW.java

HJW.java:1: class expected

clas HJW {

^� �
As below, our edujavac with reactive e-TA offers the

1st advice about the source code with a missing of
“}”, “HJW.java (missing of })”, by supplementing the
javac’s original error messages with teacher-specified
explanations of a learner’s unknown technical word
“parsing”. Until she indents her source code properly
by using such an editor as Emacs, our edujavac with
e-TA continues to give the same advice “indent prop-
erly” before giving “insert } in the line no.5” as the
last and most specific advice to her.

edujavac HJW.java (missing of }) with Reactive e-TA� �
[supplement except know-dir={“class”, “interface”}]

> edujavac HJW.java

HJW.java:4: reached end of file while parsing

}

^

1 error

parsing is the process of analyzing a text ...

TEXT: none

URL: http://en.wikipedia.org/wiki/Parsing

> edujavac HJW.java

HJW.java:?: indent properly

indent is to format code to improve readability ...

TEXT: Objects First with Java, pp.494

URL: http://en.wikipedia.org/wiki/Indent_style

> edujavac HJW.java

HJW.java:?: indent properly

indent is to format code to improve readability ...

TEXT: Objects First with Java, pp.494

URL: http://en.wikipedia.org/wiki/Indent_style

> emacs HJW.java

> more HJW.java

class HJW {

public static void main(String[] args) {

System.out.println("Hello Java World");

}

> edujavac HJW.java

HJW.java:5: insert } in the line no.5� �

4.2 Advice Examples of Proactive e-TA

Our education-oriented Java compiler with proactive e-
TA, edujavac, offers the following advices to the learner
with known technical keywords, know-dir={“class”,
“interface”}. For a Java filename (.java) at the 1st
learner’s prompt (you>>), our e-TA reactively offers
all of its javac’s error messages in which her unknown
technical keywords such as “enum” are masked. Even
if no input as the 2nd learner’s prompt, after such a
period of time as 15 minutes specified by her teacher,
our e-TA proactively offers only the 1st error message
in which her unknown technical keywords are masked.
For a technical keyword at the 3rd learner’s prompt,
our e-TA reactively offers the explanation of the key-
word specified by her teacher. Even if no input as her
prompt, our e-TA proactively offers one by one from a
generated sequence of advices after such a period.

edujavac HJW.java (typo) with Proactive e-TA� �
[mask except know-dir={“class”, “interface”}]

> edujavac

eTA>> Hello.

you>> HJW.java

HJW.java:1: class or interface expected

clas HJW {

^

HJW.java:2: class or interface expected

public static void main(String[] args) {

^

HJW.java:4: class or interface expected

}

^

3 errors

you>>

eTA>> HJW.java:1: class or interface expected

clas HJW {

^

you>> interface

eTA>> interface is an abstract type that ...

TEXT: Objects First with Java, pp.328

URL: http://en.wikipedia.org/wiki/Interface_(Java)

you>>

eTA>> HJW.java:1: class expected

clas HJW {

^

you>>

eTA>> HJW.java:1: there is a typo anywhere

you>>

eTA>> HJW.java:1: there is a typo in the line no.1

you>>

eTA>> HJW.java:1: replace clas in the line no.1

you>>

eTA>> HJW.java:1: replace clas with class in the...

line no.1

you>>� �
5

5 Conclusion

In this paper, we have proposed an education-oriented
compiler with user-adaptive and active e-TA (elec-
tronic Teaching Agent) about compile errors for not in-
termediate and advanced program developers but new
learners of programming in the context of software en-
gineering education, especially introductory program-
ming exercise. And we have described an implemen-
tation of our proposed education-oriented Java com-
piler to present not only static and often difficult-to-
understand error messages by the most primary Java
compiler, javac, but also easy-to-understand advice ap-
propriately and on a timely basis (dynamically) de-
pending on programming knowledge of learners who
browse the compiler’s error messages as if at least
a high-level teacher or TA were always man-on-man
standing at the learners’ side. The prototype can deal
with a typo, missing of “}” or “)”, and not-found sym-
bol as a part of various kinds of compile errors. We are
working up the registered patterns and rules to deal
with as many kinds of compile errors as possible.

In the future, we plan to evaluate our proposed
education-oriented Java compiler, edujavac, with e-TA
who give advices proactively or reactively by masking
or supplementing a user’s unknown technical keywords,
by applying it to practical introductory Java program-
ming exercises for Computer Science freshmen at our
university. And we try to invent a mechanism that not
single but multiple different e-TAs collaboratively give
advices to the user as if a human TA asked the other
TA or teacher for help in a practical exercise classroom.

Acknowledgment

This work was supported in part by Tangible Software
Engineering Education1 (Project Leader: Taichi Naka-
mura, Tokyo University of Technology).

References

[1] Hattori, S., Yamazaki, M., and Kameda, H.: “A
Prototype of Education-oriented Java Compiler,”
Proceedings of the Second Forum on Data Engi-
neering and Information Management (DEIM’10),
F8-3 (2010).

[2] Wikipedia - javac:
http://en.wikipedia.org/wiki/Javac (2010).

[3] Jikes’ Home:
http://jikes.sourceforge.net/ (2010).

[4] GCJ: The GNU Compiler for Java:
http://gcc.gnu.org/java/ (2010).

[5] Eclipse: http://www.eclipse.org/ (2010).

[6] Welcome to NetBeans:
http://www.netbeans.org/ (2010).

1http://www.teu.ac.jp/tangible/e-index.html

[7] Nigari System:
http://www2.eplang.jp/nigari/ (2010).

[8] Cho, S., Kai, M., Kawai, A., Hino, T., Maeshima,
S., and Kakehi, K.: “Nigari - A Programming
Language and Environment for the First Stage,
Leading to Java World,” Transactions of Informa-
tion Processing Society of Japan (IPSJ), Vol.45,
No.SIG9 (PRO22), pp.25–46 (2004).

[9] Cho, S., Kakehi, K., Kawai, A., Maeshima, S.,
and Hino, T.: “Nigari System - Stairway to Java,”
Proceedings of 2nd IADIS International Confer-
ence on e-Society, pp.960–965 (2004).

[10] Kotodama Community: http://garuda.crew.
sfc.keio.ac.jp/kotodamaCommunity/ (2010).

[11] Araki Megumi, Ken Okada, and Hajime Ohiwa.
The programming education in elementary school
using music box as a theme with using pro-
gramming system “Kotodama on Squeak”. IPSJ
SIG Technical Reports, Vol.2007, No.12(CE-88),
pp.69–75 (2007).

[12] Okada, K., Sugiura, M., Matsuzawa, Y., Araki,
M., and Ohiwa, H.: “Programming in Japanese
for Literacy Education,” IFIP History of Comput-
ing and Education 3, pp.171–176, Springer Boston
(2008).

[13] PEN (Programming Environment for Novices):
http://grape.media.osaka-cu.ac.jp/PEN/
(2010).

[14] Nishida, T., Harada, A., Nakamura, R.,
Miyamoto, Y., and Matsuura, T.: “Implemen-
tation and Evaluation of PEN: The Program-
ming Environment for Novices,” Transactions of
Information Processing Society of Japan (IPSJ),
Vol.48, No.8, pp.2736–2747 (2007).

[15] Nishida, T., Harada, A., Yoshida, T., Nakamura,
R., Nakanishi, M., Toyoda, H., Abe, K., Ishibashi,
H., and Matsuura, T.: “PEN: A Programming
Environment for Novices – Overview and Prac-
tical Lessons –,” Proceedings of World Confer-
ence on Educational Multimedia, Hypermedia and
Telecommunications (ED-MEDIA), pp.4755–4883
(2008).

[16] R. Mark Meyer and Debra T. Burhans: “Robo-
tran: A Programming Environment for Novices
Using LEGO Mindstorms Robots,” Proceedings
of the 20th International Florida Artificial Intel-
ligence Research Society (FLAIRS) Conference,
pp.321–326 (2007).

[17] Greenfoot - The Java Object World.
http://www.greenfoot.org/ (2010).

6

