
EDUCATION-ORIENTED JAVA COMPILER WITH
ACTIVE E-TA FOR PROGRAMMING EDUCATION

Shun Hattori and Hiroyuki Kameda
School of Computer Science, Tokyo University of Technology

1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, JAPAN

ABSTRACT

In recent years, those who do not acquire enough programming ability and also hesitate in programming have been
increasing, even though they are Computer Science students/graduates. One of the major reasons is that they could not
avoid facing very difficult and unexpectedly massive compile errors with unknown technical words when they were
beginners of programming. This paper proposes an education-oriented compiler with reactive/proactive e-TA (electronic
Teaching Agent) for programming education, and shows an implementation of our education-oriented Java compiler to
present not only static compile errors as-is but also easy-to-understand advice appropriately and on a timely basis
(dynamically) depending on programming knowledge of learners who browse the compile errors as if at least a high-level
human teacher or TA were always man-on-man standing at the learners’ side.

KEYWORDS

Education-oriented Compiler, e-TA (electronic Teaching Agent), User-Adaptive Compiler, Proactive Compiler,
Programming Education, Software Engineering Education.

1. INTRODUCTION

Today, software is one of the most important social infrastructures. Our societies require capable human
resources who can develop software at higher level, and various educational institutions such as universities
provide software engineering (programming) education aggressively. In Japan, however, those who do not
acquire enough programming ability and also hesitate in programming have been increasing in recent years,
even though they are CS (Computer Science) or IT (Information Technology) students/graduates.

One of the major reasons is that they could not avoid facing very difficult and unexpectedly massive
compile errors with unacquainted English words or technical words and thus have given up learning about
programming knowledge and skills when they were beginners of programming. Conventional compilers such
as javac are for not programming education but software development, and are for not beginners of
programming but intermediate and advanced developers. Another reason is that such human-powered
supports by a teacher and a few TAs (Teaching Assistants) as deciphering compiler’s error messages for
learners and giving appropriate advice timely have several limitations in introductory programming exercises.

In this paper, we propose an education-oriented compiler with user-adaptive and active e-TA (electronic
Teaching Agent) for introductory programming exercises, and describe an implementation of our education-
oriented Java compiler to present not only static and often difficult-to-understand error messages by the most
primary Java compiler, javac, but also easy-to-understand advice appropriately and on a timely basis
(dynamically) depending on programming knowledge of learners who browse the compiler’s error messages
as if a high-level teacher or TA were always man-on-man standing at the learners’ side.

2. DESIGN OF EDUCATION-ORIENTED JAVA COMPILER WITH E-TA

This section describes a design of our proposed education-oriented Java compiler, edujavac, in programming
education for novices, as a first step to the universal compiler whose error messages are easy-to-understand
for anybody with any level of knowledge and skills of programming. Not to overstress new learners of

IADIS International Conference Intelligent Systems and Agents 2011

165

programming by difficult-to-understand compiler’s error messages and/or human-to-human communication
such as question-and-answering, not a human teacher or TA but a computer e-TA (electronic Teaching
Agent) of our education-oriented Java compiler provides the learners with such supports as deciphering
compiler’s error messages for learners and giving appropriate advice about what wrong in their source code
and/or how to modify their source code.

Our education-oriented Java compiler with e-TA for not software development but software engineering
education, especially introductory programming exercises, should have the following requirements.

1. User-Adaptiveness: The primary Java compiler, javac, has “disability of User-Adaptiveness”.
� Learner-Adaptiveness: In programming exercises, a human teacher or TA seems to offer a student

with appropriate and timely advice based on the student’s level of knowledge and skills of programming
inferred by observing the student’s action history (e.g., transition of source code) and error tendency from
behind, and/or asking the student additional questions arbitrarily (if necessary, referring the example source
code of the student’s tackling assignment). Therefore, for a learner, our proposed e-TA should generate
appropriate and timely advice dependent on the learner’s level of knowledge (e.g., reserved keywords and
technical terms) of programming.

� Teacher-Adaptiveness: Before programming exercises, a human teacher had better give her/his
human TAs enough guidance about how to advise her/his students, e.g., timing control and kindness control.
Therefore, for a teacher, our proposed e-TA should generate appropriate and timely advice according to the
teacher’s educational policies about timing, kindness, and programming knowledge and skills to teach.

2. Activeness: The primary Java compiler, javac, has “disability of Activeness”. And some learners who
cannot ask a human teacher or TA because of such a personality as shyness of strangers even if stuck in
compiler’s error messages and would leave them unsolved. Therefore, our e-TA should not reactively but
proactively advise shy learners if necessary without their explicit search of the other’s advice.

Our education-oriented Java compiler with e-TA generates appropriate and timely advice to error
messages by compiling a learner’s source code for a teacher’s assignment based on Learner and Teacher
models [Hattori, 2010]. Each learner has a knowledge directory, know-dir, on her/his local computer as
her/his Learner model. Technical keywords with high frequency to some extent extracted from electronic
documents in the learner’s knowledge directory are identified as her/his well-known keywords. Unknown
technical keywords in its error messages are masked depending on the user’s knowledge (i.e., electronic
documents in the knowledge directory), or are supplemented with some additional explanation and by
referring textbooks and Web pages. Whether to mask or supplement them for each learner and what to refer,
and the interval of updating content of e-TA’s advice are specified in advance and can be always switched by
each teacher as her/his Teacher model.

First, our e-TA finds the most effective (but maybe the least educational) method to modify a targeted
source code with errors by referring its original error messages of the most conventional Java compiler, javac.
In the case of generating the most effective modification method to the javac’s 1st error message for
“HJW.java (typo)” in Figure 1, e-TA collects the following 6 kinds of modification candidates by inferring
“insert” or “replace” as its operation from a pattern “expected” and extracting its keyword and location, and
selects one based on the number of re-compile errors after applying each modification candidate:

(insert, 1, 1, “class”) 3 � 1 error
(insert, 1, 1, “interface”) 3 � 1 error
(insert, 1, 1, “enum”) 3 � 2 errors
(replace, 1, 1, “class”) 3 ���� 0 error
(replace, 1, 1, “interface”) 3 � 2 errors
(replace, 1, 1, “enum”) 3 � 4 errors
Next, our e-TA generates a sequence of advices by rule-based interpolating between the javac’s original

error message(s) and the most effective modification method, e.g., (replace, 1, 1, “class”).

3. DEMOS OF EDUCATION-ORIENTED JAVA COMPILER WITH E-TA

As an implementation of our proposed education-oriented Java compiler, edujavac, in programming
education, this section describes a prototype of our user-adaptive (knowledge-dependent) Java compiler with
reactive or proactive e-TA to present not only static error messages by the existing Java compiler, javac, but

ISBN: 978-972-8939-41-0 © 2011 IADIS

166

also easy-to-understand advice appropriately and on a timely basis (dynamically) depending on programming
knowledge of learners who browse the compiler’s error messages. The current prototype can deal with a typo,
missing of “}” or “)” etc., and not-found symbol as a part of various kinds of compile errors.

3.1 Advice Examples of Reactive e-TA

The primary Java compiler, javac, offers the quite same error messages indefinitely unless the inputted
source code is modified as shown in Figure 1. Meanwhile, our proposed education-oriented Java compiler,
edujavac, with reactive e-TA offers the following sequence of advices about the source code with a typo,
“HJW.java (typo)”, to the learner with known technical keyword(s), know-dir ={“class”}. Our edujavac with
e-TA masks the other technical keywords than a learner’s know-dir = {“class”} on the left as below, while it
supplements them with their explanations as her/his teacher’s knowledge to teach on the right.

Figure 1. edujavac HJW.java (with a typo) with Reactive e-TA

3.2 Advice Examples of Proactive e-TA

Figure 2 shows advices offered to a learner with known technical keywords, know-dir ={“class”, “interface”},
by our education-oriented Java compiler with proactive e-TA. For a Java filename (.java) at the 1st learner’s

> cat HJW.java
clas HJW {

public static void main(String[] args) {
System.out.println(“Hello, Java World.”);

}
}

> javac HJW.java
HJW.java:1: class, interface, or enum expected
clas HJW {
^
HJW.java:2: class, interface, or enum expected

public static void main(String[] args) {
^

HJW.java:4: class, interface, or enum expected
}
^

3 errors

> edujavac HJW.java
HJW.java:1: class expected
clas HJW {
^
HJW.java:2: class expected

public static void main(String[] args) {
^

HJW.java:4: class expected
}
^

3 errors

> edujavac HJW.java
HJW.java:1: class expected
clas HJW {
^
> edujavac HJW.java
HJW.java:1: there is a typo anywhere

> edujavac HJW.java
HJW.java:1: there is a typo in the line no.1

> edujavac HJW.java
HJW.java:1: replace clas with something in the
line no.1

> edujavac HJW.java
HJW.java:1: replace clas with class in the
line no.1

> edujavac HJW.java
HJW.java:1: class, interface, or enum expected
clas HJW {
^
HJW.java:2: class, interface, or enum expected

public static void main(String[] args) {
^

HJW.java:4: class, interface, or enum expected
}
^

3 errors

interface is an abstract type that ...
TEXT: Objects First with Java, pp.328
URL:http://en.wikipedia.org/wiki/Interface_(Java)

enum is a data type that ...
TEXT: Objects First with Java, pp.233
URL: http://en.wikipedia.org/wiki/Enumerated_type

> edujavac HJW.java
HJW.java:1: class expected
clas HJW {
^
interface is an abstract type that ...

TEXT: Objects First with Java, pp.328
URL:http://en.wikipedia.org/wiki/Interface_(Java)

enum is a data type that ...
TEXT: Objects First with Java, pp.233
URL: http://en.wikipedia.org/wiki/Enumerated_type

> edujavac HJW.java
HJW.java:1: class expected
clas HJW {
^
> edujavac HJW.java
HJW.java:1: there is a typo anywhere

> edujavac HJW.java
HJW.java:1: there is a typo in the line no.1

> edujavac HJW.java
HJW.java:1: replace clas with something in the
line no.1

> edujavac HJW.java
HJW.java:1: replace clas with class in the
line no.1

[mask except know-dir={“class”}] [supplement except know-dir={“class”}]

IADIS International Conference Intelligent Systems and Agents 2011

167

prompt (you>>), our e-TA reactively offers all of its javac’s error messages in which her/his unknown
technical keywords such as “enum” are masked. Even if no inputs as the 2nd learner’s prompt, after such a
period of time as 15 minutes specified by her/his teacher, e-TA proactively offers only the 1st error message
in which her/his unknown technical keywords are masked. For a technical keyword at the 3rd learner’s
prompt, e-TA reactively offers the explanation of the keyword specified by her/his teacher. Even if no inputs
as her/his prompt, e-TA proactively offers one by one from a generated sequence of advices after the period.

Figure 2. edujavac HJW.java (with a typo) with Proactive e-TA

4. CONCLUSION

In this paper, we have proposed an education-oriented compiler with reactive or proactive e-TA (electronic
Teaching Agent) about compile errors for not intermediate and advanced program developers but new
learners of programming in the context of software engineering education, especially introductory
programming exercise. And we have described an implementation of our proposed education-oriented Java
compiler to present not only static and often difficult-to-understand error messages by the most primary Java
compiler, javac, but also easy-to-understand advice appropriately and on a timely basis (dynamically)
depending on programming knowledge of learners who browse the compiler's error messages as if at least a
high-level teacher or TA were always man-on-man standing at the learners’ side. The prototype can deal with
a typo, missing of “}” or “)” etc., and not-found symbol as a part of various kinds of compile errors. We are
working up the registered patterns and rules to deal with as many kinds of compile errors as possible.

In the future, we plan to evaluate our proposed education-oriented Java compiler, edujavac, with user-
adaptive and active e-TA who gives advices proactively or reactively by masking or supplementing a user’s
unknown technical keywords, by applying it to practical introductory Java programming exercises for
Computer Science (CS) freshmen at our university. And we try to invent a mechanism that not single but
multiple different e-TAs collaboratively give advices to the user as if a human TA asked the other TA or
teacher for help in a practical exercise classroom.

REFERENCES

Hattori, S. and Kameda, H., 2010. Knowledge-based Compiler with e-TA for Software Engineering Education. Proc. of
the 9th Joint Conference on Knowledge-Based Software Engineering (JCKBSE’10). Kaunas, Lithuania, pp. 265-278.

> Edujavac
eTA>> Hello.
you>> HJW.java
HJW.java:1: class or interface expected
clas HJW {
^
HJW.java:2: class or interface expected

public static void main(String[] args) {
^

HJW.java:4: class or interface enum expected
}
^

3 errors
you>>
eTA>> HJW.java:1: class or interface expected
clas HJW {
^
you>> interface
(continues to the right)

interface is an abstract type that ...
TEXT: Objects First with Java, pp.328
URL: http://en.wikipedia.org/wiki/Interface_(Java)

you>>
eTA>> HJW.java:1: class expected
clas HJW {
^
you>>
eTA>> HJW.java:1: there is a typo anywhere
you>>
eTA>> HJW.java:1: there is a typo in the line
no.1
you>>
eTA>> HJW.java:1: replace clas with something
in the line no.1
you>>
eTA>> HJW.java:1: replace clas with class in
the line no.1
you>>

[mask except know-dir={“class”,“interface”}]

ISBN: 978-972-8939-41-0 © 2011 IADIS

168

	ISA 2011 - Cover
	ISA 2011
	COPYRIGHT
	TABLE OF CONTENTS
	FOREWORD
	PROGRAM COMMITTEE
	KEYNOTE LECTURES
	FULL PAPERS
	EVALUATION OF AIRCRAFT ACCIDENT CONSIDERING PANICKED PASSENGERS USING A PSYCHOLOGICAL INTERNAL MODEL
	DESIGNING MULTI-AGENT UNIT TESTS USING SYSTEMATIC TEST DESIGN PATTERNS
	MP-IR: A SECURE MOBILE AGENTS SYSTEM FOR DISTRIBUTED INFORMATION RETRIEVAL
	ANALYZING THE LEARNING PERFORMANCE OF AGENTS BASED ON THE WANG-MENDEL ALGORITHM
	TOWARDS FLEXIBLE CONVERSATION PROTOCOL GENERATION AND VERIFICATION: A SOCIAL COMMITMENT APPROACH
	A NEAR-OPTIMAL ALGORITHM FOR INTERCEPTING THE BALL IN ROBOTIC SOCCER
	SPATIOTEMPORAL ANALYSIS OF CUSTOMER BEHAVIOR AT THE POINT OF SALE
	MOBILE ROBOT LOCALIZATION BASED ON RSSI MEASUREMENTS USING AN RFID SENSOR
	MOTION LEARNING PROBLEM IN ROBOTICS USING BAYES NETWORKS

	SHORT PAPERS
	MULTI-AGENTS IN THE NORTH SEA – THE CASE OF OIL AND GAS PRODUCTION
	AGENT BASED PRODUCTION LINE MONITORING SYSTEM
	AUTONOMOUS CONTROL STRATEGY FOR HUMAN–MOBILE ROBOT COOPERATION ON ROUGH TERRAINS
	EVOLUTIONARY APPROACH FOR AUTOMATIC DESIGN OF NEURAL NETWORKS ENSEMBLES FOR MODELING AND TIME SERIES FORECASTING
	QUANTUM ASSOCIATIVE MEMORY AS AN OPERATOR
	ARTIFICIAL INTELLIGENCE APPLIED TO THE IMPROVEMENT OF THE FIRM’S QUALITY
	MACHINE LEARNING BASED STUDY COURSE COMPARISON
	INTERACTIVE INDUCTIVE LEARNING BASED CLASSIFICATION SYSTEM
	Q-MIN UNSAT: AN OPTIMIZATION PROBLEM FOR QUANTIFIED BOOLEAN FORMULAS
	INTERACTION PROTOCOLS FOR MAIS-E2 MODEL AND R2-IBN FRAMEWORK
	VOCABULARY AGENTS AND CONSCIOUS ACTION SELECTION FOR CONTENT MANAGEMENT IN A LANGUAGE TEACHING ENVIRONMENT
	ADAPTINTRANET: AN INTELLIGENT AND ADAPTIVE AGENT-BASED INTERFACE FOR INTRANETS
	USING AGENTS TO CREATE A UNIVERSITY TIMETABLE ADDRESSING ESSENTIAL & DESIRABLE CONSTRAINTS AND FAIR ALLOCATION OF RESOURCES
	THE DEVELOPMENT OF AGENT-BASED INTELLECTUAL E-LEARNING ENVIRONMENT

	REFLECTION PAPER
	A SEMANTIC KNOWLEDGE SEARCH PLATFORM FOR AEROSPACE COLLABORATIVE WORKING ENVIRONMENTS

	POSTERS
	A PROCEDURE TO COMPUTE ALLOCATIONS BY SEMIVALUES ON COOPERATIVE GAMES THROUGH MODIFIED MULTILINEAR EXTENSIONS
	BIOMETRIC-BASED INTELLIGENT AGENT SYSTEMS
	EDUCATION-ORIENTED JAVA COMPILER WITH ACTIVE E-TA FOR PROGRAMMING EDUCATION
	DECISION SUPPORT WITH BPSIM.DSS: INTEGRATION OF MULTI-AGENT SIMULATION AND ENGINEERING SYSTEMS

	AUTHOR INDEX

