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Abstract—Many researches on mining the Web, especially
CGM (Consumer Generated Media) such as Weblogs, for
knowledge about various phenomena and events in the physical
world have been done actively, and Web services with the Web-
mined knowledge have begun to be developed for the public.
However, there is no detailed investigation on how accurately
Web-mined data reflect real-world data. It must be problematic
to idolatrously utilize the Web-mined data in public Web
services without ensuring their accuracy sufficiently. Therefore,
this paper defines the basic Weblog Sensor with a neutral,
positive, or negative description for a target phenomenon, and
their linearly-combined Weblog Sensors, and tries to validate
the potential and reliability of these Weblog Sensors’ spatio-
temporal data by measuring the correlation with weather
(precipitation) and earthquake (maximum seismic intensity and
number of felt quakes) statistics per day by region of Japan
Meteorological Agency as real-world data.

Keywords-Web mining; Web credibility; Web sensors; knowl-
edge extraction; search engine indices; spatio-temporal data.

I. INTRODUCTION

In recent years, how to make physical spaces smarter has
become one of the hottest topics in the research field of ubiq-
uitous/pervasive computing. Smart Spaces are often physi-
cally isolated environments such as rooms, which are made
smart by various information communication technologies.
They would be much more convenient for information access
in the future. Meanwhile, information security has also
become very significant in any situation, especially in public
places such as indoor work places, educational facilities,
healthcare centers and so on. The amount of physical or
virtual information resources which should be protected in
the physical world grows exponentially.

Physical environments are becoming smart but not always
secure. When a virtual (computational) information resource
is requested to access by a user via an output device,
conventional access control systems make a decision on
whether the user should be granted or denied to access the
resource based on its access policies and surely enforce the
access decision. However, even if the requester is authorized
by it, it should not be immediately offered to her via the
output device, because there might be its unauthorized users
as well as the authorized requester around the output device,

especially in public places. A user trying to visit a physical
environment might in turn be unexpectedly exposed to her
unwanted information access. For example, although she
does not want to know about the results of a football
game that she had recorded on video to watch later, she
unfortunately encounters it in her train. Meanwhile, when
a user enters a physical environment, the user might hate
its physical characteristics (e.g., degrees of dismal and
danger) and/or be forced to access her unwanted information
resources unexpectedly. This paper proposes a method to
extract information for making access or entry decisions
in Secure Spaces [1] from very large text corpora such
as the Weblog, and improve the Secure Spaces by adding
the concept of the Weblog Sensors [2], [3], in order to
enable users to specify their access policies by keyword-
based expressions about their unwanted physical spaces.

The former Web world did not have a familiar relationship
with the physical world, and it is not too much to say
that the former Web world was isolated and independent
of the physical world. But in recent years, the explosively-
growing Web has had more and more familiar relationship
with the physical world, as the use of the Web, especially
CGM (Consumer Generated Media) such as Weblogs, WOM
(Word of Mouth) sites, SNSs (Social Networking Services),
has become more popular with various people without
distinction of age/sex.

Many researches on mining the Web, especially CGM
(Consumer Generated Media) such as Weblogs, for knowl-
edge about various phenomena and events in the physical
world have been done very actively. For example, opinion
and reputation extraction [4] of various products and services
provided in the physical world, experience mining [5] of
various phenomena and events held in the physical world,
and concept hierarchy (semantics) extraction such as is-
a/has-a relationships [6], [7] and appearance (look and feel)
extraction [8], [9] of physical objects in the physical world.
Meanwhile, Web services with the Web-mined knowledge
have begun to be developed for the public, and more and
more ordinary people actually utilize them as information
for choosing better products, services, and actions in the
physical world.
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However, there is no detailed investigation on how accu-
rately Web-mined data about a phenomenon or event held in
the physical world reflect real-world data. It is not difficult
for us to extract some kind of the potential knowledge data
from the Web by using various text mining techniques, and
it might be not problematic just to enjoy browsing them.
But while choosing better products, services, and actions in
the physical world, it must be problematic to idolatrously
utilize the Web-mined data in public Web services without
ensuring their accuracy sufficiently.

This paper defines the basic Weblog Sensor with a neu-
tral, positive, or negative Japanese description for a target
phenomenon (e.g., rainfall and earthquake) in the physical
world as follows.

• Neutral: “雨” (rain) and “地震” (earthquake)
• Positive: “強い雨” (heavy rain) and “強い地震” (strong

earthquake)
• Negative: “弱い雨” (light rain) and “弱い地震” (weak

earthquake)
And also this paper defines their linearly-combined Weblog
Sensors to mine the Web, especially CGM such as We-
blog documents for spatio-temporal data about the target
phenomenon. And then this paper tries to validate the
potential and reliability of these Weblog Sensors’ spatio-
temporal data by measuring the correlation with weather
(precipitation) and earthquake (maximum seismic intensity
and number of felt quakes) statistics per day by region of
Japan Meteorological Agency [10] as real-world data.

The remainder of this paper is organized as follows.
Section II introduces Secure Spaces with Weblog Sensors.
Section III defines the basic Weblog Sensor with a neutral,
positive, or negative description for a target phenomenon,
and their linearly-combined Weblog Sensors. Section IV val-
idates the potential and reliability of these Weblog Sensors’
spatio-temporal data. Section V concludes this paper.

II. SECURE SPACES

To build Secure Spaces in the real world by using space
entry control based on their dynamically changing contents
such as their visitors, physical/virtual information resources
via their embedded output devices, each Secure Space re-
quires the following facilities as shown in Figure 1.

• Space Management: is responsible for managing a Se-
cure Space, i.e., for constantly figuring out its contents
such as its visitors, its embedded physical information
resources and virtual information resources outputted
via its embedded output devices and also for ad-hoc
making an authorization decision on whether an entry
request to enter the Secure Space by a visitor or a
physical/virtual information resource should be granted
or denied, and for notifying the entry decisions to the
Electrically Lockable Doors or enforcing entry control
over virtual information resources according to the
entry decisions by itself.

• User/Object Authentication: is responsible for authen-
ticating what physical entity such as a user or a physical
information resource requests to enter or exit the Secure
Space, e.g., by using Radio Frequency IDentification or
biometrics technologies, and also for notifying it to the
Space Management.

• Electrically Lockable Door: is responsible for elec-
trically locking or unlocking itself, i.e., for assuredly
enforcing entry control over physical entities such as
users and physical information resources, according to
instructions by the Space Management.

• Physically Isolating Opaque Wall: is responsible for
physically isolating inside a Secure Space from outside
there with regard to information access, i.e., for validat-
ing the basic assumption that any user inside a Secure
Space can access any resource inside the Secure Space
while any user outside the Secure Space can never any
resource inside the Secure Space.

To protect us from our unwanted characteristics of phys-
ical spaces as well as our unauthorized contents of physical
spaces, the following additional facilities are required.

• Real Sensor: is responsible for physically sensing
inside a Secure Space for its physical characteristics
to make access decisions in the Secure Space and
also for notifying the sensor data stream to the Space
Management. For example, thermometers, hygrometers,
(security) cameras.

• Weblog Sensor: is responsible for logically sensing
the Weblog for the approximate characteristics of each
Secure Space to make access decisions in the Secure
Space and also for notifying the Web-mined data to the
Space Management. Note that any Secure Space does
not have to equip the extra devices unlike Real Sensors.
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III. METHOD

This section constructs the basic (unnormalized) Weblog
Sensors with a neutral, positive, or negative Japanese de-
scription for a target phenomenon (e.g., rainfall and earth-
quake) in the physical world, the spatially-normalized We-
blog Sensors, and their linearly-combined Weblog Sensors
to mine the Web, especially Weblog documents for spatio-
temporal data about the target phenomenon.

First, I define the basic Weblog Sensors with a geograph-
ical space s, e.g., 47 prefectural capitals in Japan such as
“東京” (Tokyo) and “京都” (Kyoto), a time period t, e.g.,
a day such as “2011/1/1” and “2011/6/30”, and a Japanese
phrase, e.g., “雨” (ame; rain), “強い雨” (tuyoi-ame; heavy-
rain), and “弱い雨” (yowai-ame; light-rain) for such a target
phenomenon as rainfall:

ws-rain0
0(s, t) := bft(["s" & "雨"]),

ws-rain0
+(s, t) := bft(["s" & "雨" & "強い"]),

ws-rain0
−(s, t) := bft(["s" & "雨" & "弱い"]),

where bft([q]) stands for the Frequency of weBlog docu-
ments searched by submitting the query q with the custom
time range t to Google Blog Search [11], and & stands for an
AND operator. And also I define the basic Weblog Sensors
with a geographical space s, e.g., 47 prefectural capitals in
Japan such as “東京” (Tokyo) and “京都” (Kyoto), a time
period t, e.g., a day such as “2011/1/1” and “2011/6/30”,
and a Japanese phrase, e.g., “揺れ” (yure; quake), “強い揺
れ” (tuyoi-yure; strong-quake), and “弱い揺れ” (yowai-yure;
weak-quake) for such a target phenomenon as earthquake:

ws-quake0
0(s, t) := bft(["s" & "揺れ"]),

ws-quake0
+(s, t) := bft(["s" & "揺れ" & "強い"]),

ws-quake0
−(s, t) := bft(["s" & "揺れ" & "弱い"]).

Next, I define the normalized Weblog Sensors by the fre-
quency bft(["s"]) of Weblogs searched by submitting each
geographical space s with the custom time range t to Google
Blog Search to clean up spatio-temporal dependency:

ws-rain1
x(s, t) :=

ws-rain0
x(s, t)

bft(["s"])
,

ws-rain2
x(s, t) :=

ws-rain0
x(s, t)√

bft(["s"])
,

ws-quake1
x(s, t) :=

ws-quake0
x(s, t)

bft(["s"])
,

ws-quake2
x(s, t) :=

ws-quake0
x(s, t)√

bft(["s"])
,

where x stands for 0 (neutral), + (positive), or − (negative).
Last, I define their linearly-combined Weblog Sensors to

make the above-mentioned Weblog Sensors more robust:

ws-rainy
±(s, t) := (1 − α) · ws-rainy

+(s, t)
+ α · ws-rainy

−(s, t),
ws-rainy

0±(s, t) := (1 − α − β) · ws-rainy
0(s, t)

+ β · ws-rainy
+(s, t)

+ α · ws-rainy
−(s, t),

ws-quakey
±(s, t) := (1 − α) · ws-quakey

+(s, t)
+ α · ws-quakey

−(s, t),
ws-quakey

0±(s, t) := (1 − α − β) · ws-quakey
0(s, t)

+ β · ws-quakey
+(s, t)

+ α · ws-quakey
−(s, t),

where y stands for 0 (basic), 1, or 2 (normalized).

IV. EXPERIMENT

This section shows several experimental results to val-
idate the basic Weblog Sensor with a neutral, positive,
or negative Japanese description for a target phenomenon
(e.g., rainfall and earthquake) in the physical world, and
their linearly-combined Weblog Sensors to mine the Web,
especially Weblog documents for spatio-temporal data about
the target phenomenon. The whole experiments evaluate the
correlation coefficient between real statistics by JMA (Japan
Meteorological Agency) [10] as a physical sensor and spatio-
temporal data mined by my proposed Weblog Sensors.

Table I shows the average, maximum, minimum, and
standard deviation of correlation coefficient between the
JMA’s precipitation and my basic or normalized Weblog
Sensor ws-rainy

x(s, t) using a Japanese keyword “雨” (ame;
rain) for each space s ∈ 47 prefectural capitals in Japan
and each day t ∈ January 1st, 2011 to June 30th, 2011.
It shows that my normalized Weblog Sensors ws-rain1

x(s, t)
seem to be superior to my basic (unnormalized) Weblog
Sensors ws-rain0

x(s, t), and also that my Weblog Sensors
ws-rainy

−(s, t) using a negative description seem to be
superior to the other Weblog Sensors ws-rainy

0(s, t) or
ws-rainy

+(s, t) using a neutral or positive description.

Table I
COEFFICIENT CORRELATION OF BASIC/NORMALIZED

WEBLOG SENSOR ws-rainy
x(s, t) WITH JMA’S PRECIPITATION.

Avg. Max. Min. Dev.
ws-rain0

0(s, t) −0.0017 0.1941 −0.2110 0.1089
ws-rain0

+(s, t) 0.0711 0.3106 −0.1370 0.0898
ws-rain0

−(s, t) 0.1487 0.4972 −0.1153 0.1268
ws-rain1

0(s, t) 0.2317 0.4897 −0.1043 0.1651
ws-rain1

+(s, t) 0.1999 0.4851 −0.1305 0.1522
ws-rain1

−(s, t) 0.2332 0.6842 −0.1763 0.1931
ws-rain2

0(s, t) 0.0413 0.2213 −0.1194 0.0906
ws-rain2

+(s, t) 0.1164 0.3437 −0.1467 0.1009
ws-rain2

−(s, t) 0.1943 0.5474 −0.1684 0.1575
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Figures 2 to 4 show the α-dependency of the average,
maximum, minimum, and standard deviation of correlation
coefficient between the JMA’s precipitation and my 2-
linearly-combined Weblog Sensor ws-rainy

±(s, t) using pos-
itive and negative phrases for each space s ∈ 47 prefectural
capitals in Japan and each day t ∈ 2011/1/1 to 2011/6/30.
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Figure 2. Dependency of 2-Linearly-Combined Basic Weblog Sensor
ws-rain0

±(s, t) on α (the maximum Avg. 0.1527 when α = 0.98).
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Figure 3. Dependency of 2-Linearly-Combined Normalized Weblog
Sensor ws-rain1

±(s, t) on α (the maximum Avg. 0.2510 when α = 0.90).
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Figure 4. Dependency of 2-Linearly-Combined Normalized Weblog
Sensor ws-rain2

±(s, t) on α (the maximum Avg. 0.2049 when α = 0.95).

Figures 5 to 7 show the α/β-dependency of the average,
maximum, minimum, and standard deviation of correlation
coefficient between the JMA’s precipitation and my linearly-
combined Weblog Sensor ws-rainy

0±(s, t) using neutral, pos-
itive and negative Japanese phrases for each space s ∈ 47
prefectural capitals in Japan and each day t ∈ January 1st,
2011 to June 30th, 2011. These figures show that my 3-
linearly-combined Weblog Sensor ws-rain1

0±(s, t) when α =
0.91, β = 0.05 gives the best performance and is superior
to my 2-linearly-combined Weblog Sensors ws-rainy

±(s, t).
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Figure 5. Dependency of 3-Linearly-Combined Basic Weblog Sensor
ws-rain0

0±(s, t) on α, β (the maximum Avg. 0.1527 when α = 0.98,
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Table III shows the average, maximum, minimum, and
standard deviation of correlation coefficient between the
JMA’s maximum seismic intensity and my basic or nor-
malized Weblog Sensor ws-quakey

x(s, t) using a Japanese
keyword “揺れ” (yure; quake) for each space s ∈ 47
prefectural capitals in Japan and each day t ∈ January 1st,
2011 to June 30th, 2011. Here, JMA’s seismic intensity scale
is not always numerical, e.g., 5−, 5+, 6−, 6+. So, it is
converted to numerical data as shown in Table II.

Table II
JMA’S SEISMIC INTENSITY SCALE TO NUMERICAL VALUE.

Scale 0 1 2 3 4 5− 5+ 6− 6+ 7
Value 0 1 2 3 4 4.75 5.25 5.75 6.25 7

Table IV also shows the average, maximum, minimum,
and standard deviation of correlation coefficient between the
JMA’s number of felt quakes and my basic or normalized
Weblog Sensor ws-quakey

x(s, t) using a Japanese keyword
“揺れ” (yure; quake) for each space s ∈ 47 prefectural
capitals in Japan and each day t ∈ January 1st, 2011 to
June 30th, 2011. The JMA’s maximum seismic intensity and
the JMA’s number of felt quakes are derived from quite the
same natural phenomenon “earthquake”.

Table III
COEFFICIENT CORRELATION OF BASIC/NORMALIZED

WEBLOG SENSOR ws-quakey
x(s, t) WITH JMA’S SEISMIC INTENSITY.

Avg. Max. Min. Dev.
ws-quake00(s, t) 0.2695 0.6763 −0.0684 0.2705
ws-quake0+(s, t) 0.2877 0.7291 −0.0353 0.2716
ws-quake0−(s, t) 0.2845 0.6964 −0.0555 0.2716
ws-quake10(s, t) 0.3113 0.6864 −0.0506 0.2596
ws-quake1+(s, t) 0.3260 0.7592 −0.0356 0.2708
ws-quake1−(s, t) 0.3234 0.7082 −0.0460 0.2658
ws-quake20(s, t) 0.3025 0.6727 −0.0619 0.2159
ws-quake2+(s, t) 0.3040 0.7690 −0.0404 0.2212
ws-quake2−(s, t) 0.3086 0.7105 −0.0563 0.2210

Table IV
COEFFICIENT CORRELATION OF BASIC/NORMALIZED WEBLOG

SENSOR ws-quakey
x(s, t) WITH JMA’S NUMBER OF FELT QUAKES.

Avg. Max. Min. Dev.
ws-quake00(s, t) 0.1826 0.4633 −0.0928 0.1560
ws-quake0+(s, t) 0.2290 0.4692 −0.0311 0.1502
ws-quake0−(s, t) 0.3100 0.8231 −0.0578 0.2266
ws-quake10(s, t) 0.1967 0.4572 −0.0508 0.1504
ws-quake1+(s, t) 0.2378 0.4608 −0.0126 0.1529
ws-quake1−(s, t) 0.3010 0.7263 −0.0567 0.2073
ws-quake20(s, t) 0.1955 0.4745 −0.0696 0.1558
ws-quake2+(s, t) 0.2388 0.4779 −0.0239 0.1533
ws-quake2−(s, t) 0.3129 0.8142 −0.0584 0.2239

Figures 8 to 10 show the α-dependency of the av-
erage, maximum, minimum, and standard deviation of
correlation coefficient between the JMA’s maximum seis-
mic intensity and my 2-linearly-combined Weblog Sensor
ws-quakey

±(s, t) for each space s ∈ 47 prefectural capitals
in Japan and each day t ∈ 2011/1/1 to 2011/6/30.
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Figure 8. Dependency of 2-Linearly-Combined Basic Weblog Sensor
ws-quake0±(s, t) on α (the maximum Avg. 0.3369 when α = 0.85).
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Figure 9. Dependency of 2-Linearly-Combined Normalized Weblog
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Figures 11 to 13 show the α/β-dependency of the
average, maximum, minimum, and standard deviation of
correlation coefficient between the JMA’s maximum seis-
mic intensity and my 3-linearly-combined Weblog Sensor
ws-quakey

0±(s, t) for each space s ∈ 47 prefectural capitals
in Japan and each day t ∈ January 1st, 2011 to June
30th, 2011. These figures show that my 3-linearly-combined
Weblog Sensor ws-quake1

0±(s, t) when α = 0.83, β = 0.15
gives the best performance and is superior to my 2-linearly-
combined Weblog Sensors ws-quakey

±(s, t).
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Figure 11. Dependency of 3-Linearly-Combined Basic Weblog Sensor
ws-quake00±(s, t) on α, β (the maximum Avg. 0.3369 when α = 0.85,
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Figure 12. Dependency of 3-Linearly-Combined Normalized Weblog
Sensor ws-quake10±(s, t) on α, β (the maximum Avg. 0.3558 when
α = 0.83, β = 0.15).
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Figure 13. Dependency of 3-Linearly-Combined Normalized Weblog
Sensor ws-quake20±(s, t) on α, β (the maximum Avg. 0.3492 when
α = 0.84, β = 0.16).

Figure 14 shows the spatial dependency of correlation
coefficient between the JMA’s maximum seismic intensity
and my 3-linearly-combined normalized Weblog Sensor
ws-quake1

0±(s, t) when α = 0.83, β = 0.15. Figure 15
shows the distribution of JMA’s maximum seismic intensity
by the Great East Japan Earthquake on March 11th, 2011.
These figures show that my 3-linearly-combined normalized
Weblog Sensor ws-quake1

0±(s, t) seems to give more corre-
lation coefficient with the JMA’s maximum seismic intensity
for regions with more seismic intensity.
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Figure 14. Spatial Dependency of 3-Linearly-Combined Normalized
Weblog Sensor ws-quake10±(s, t) when α = 0.83, β = 0.15.
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Figure 15. Distribution of Seismic Intensity on March 11th, 2011 in Japan.
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Figures 16 to 18 show the α-dependency of the average,
maximum, minimum, and standard deviation of correlation
coefficient between the JMA’s number of felt quakes and
my 2-linearly-combined Weblog Sensor ws-quakey

±(s, t) for
each space s ∈ 47 prefectural capitals in Japan and each day
t ∈ January 1st, 2011 to June 30th, 2011.
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Figure 16. Dependency of 2-Linearly-Combined Basic Weblog Sensor
ws-quake0±(s, t) on α (the maximum Avg. 0.3179 when α = 0.97).
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Figure 17. Dependency of 2-Linearly-Combined Normalized Weblog
Sensor ws-quake1±(s, t) on α (the maximum Avg. 0.3179 when α = 0.94).

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Max.

Avg.

Dev.

Min.

α
Figure 18. Dependency of 2-Linearly-Combined Normalized Weblog
Sensor ws-quake2±(s, t) on α (the maximum Avg. 0.3252 when α = 0.96).

Figures 19 to 21 show the α/β-dependency of the average,
maximum, minimum, and standard deviation of correlation
coefficient between the JMA’s number of felt quakes and
my 3-linearly-combined Weblog Sensor ws-quakey

0±(s, t)
for each space s ∈ 47 prefectural capitals in Japan and
each day t ∈ January 1st, 2011 to June 30th, 2011. These
figures show that my 3-linearly-combined Weblog Sensor
ws-quake2

0±(s, t) when α = 0.94, β = 0.06 gives the best
performance but is equal to my 2-linearly-combined Weblog
Sensor ws-quake2

±(s, t) when α = 0.94.
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Figure 19. Dependency of 3-Linearly-Combined Basic Weblog Sensor
ws-quake00±(s, t) on α, β (the maximum Avg. 0.3179 when α = 0.97,
β = 0.03).
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Figure 20. Dependency of 3-Linearly-Combined Normalized Weblog
Sensor ws-quake10±(s, t) on α, β (the maximum Avg. 0.3179 when
α = 0.94, β = 0.06).
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Figure 21. Dependency of 3-Linearly-Combined Normalized Weblog
Sensor ws-quake20±(s, t) on α, β (the maximum Avg. 0.3252 when
α = 0.94, β = 0.06).

903



Figure 22 shows the spatial dependency of correla-
tion coefficient between the JMA’s number of felt quakes
and my 3-linearly-combined normalized Weblog Sensor
ws-quake2

0±(s, t) when α = 0.94, β = 0.06. Figure 23
shows the distribution of JMA’s number of felt quakes by the
Great East Japan Earthquake on March 11th, 2011. These
figures show that my 3-linearly-combined normalized We-
blog Sensor ws-quake2

0±(s, t) seems to give more correlation
coefficient with the JMA’s maximum seismic intensity for
regions with more felt quakes, but there are some irregular
regions with higher correlation but less felt quakes.
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Figure 22. Spatial Dependency of 3-Linearly-Combined Normalized
Weblog Sensor ws-quake20±(s, t) when α = 0.94, β = 0.06.
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Figure 23. Distribution of JMA’s Number of Felt Quakes on March 11th,
2011 in Japan.

V. CONCLUSION

This paper has defined the basic Weblog Sensor with
a neutral, positive, or negative description for a target
phenomenon (e.g., rainfall and earthquake) in the physical
world, and their linearly-combined Weblog Sensors to mine
the Web, especially CGM such as Weblog documents for
spatio-temporal data about the target phenomenon. And also
this paper has validated some potential and reliability of
these Weblog Sensors’ spatio-temporal data by measuring
the correlation coefficient with weather (precipitation) and
earthquake (maximum seismic intensity and number of felt
quakes) statistics per day by region of Japan Meteorological
Agency as real-world data.

ACKNOWLEDGMENT

This work was supported in part by JSPS Grant-in-Aid for
Young Scientists (B) “A research on Web Sensors to extract
spatio-temporal data from the Web” (23700129, Project
Leader: Shun Hattori, 2011-2012).

REFERENCES

[1] Hattori, S. and Tanaka, K.: “Towards Building Secure Smart
Spaces for Information Security in the Physical World,” Journal
of Advanced Computational Intelligence and Intelligent Infor-
matics (JACIII), vol.11, no.8, pp.1023–1029 (2007).

[2] Hattori, S. and Tanaka, K.: “Mining the Web for Access
Decision-Making in Secure Spaces,” Proc. of SCIS&ISIS’08,
TH-G3-4, pp.370–375 (2008).

[3] Hattori, S.: “Secure Spaces and Spatio-Temporal Weblog Sen-
sors with Temporal Shift and Propagation,” Proc. of DEIT’11,
pp.1042–1047 (2011).

[4] Dave, K., Lawrence, S., and Pennock, D.M.: “Mining the
Peanut Gallery: Opinion Extraction and Semantic Classifica-
tion of Product Reviews,” Proc. of WWW’03, pp.519–528
(2003).

[5] Tezuka, T., Kurashima, T., and Tanaka, K.: “Toward Tighter
Integration of Web Search with a Geographic Information
System,” Proc. of WWW’06, pp.277–286 (2006).

[6] Hattori, S., Ohshima, H., Oyama, S., and Tanaka, K.: “Min-
ing the Web for Hyponymy Relations based on Property
Inheritance,” Proc. of APWeb’08, LNCS Vol.4976, pp.99–110
(2008).

[7] Hattori, S., and Tanaka, K.: “Extracting Concept Hierarchy
Knowledge from the Web based on Property Inheritance and
Aggregation,” Proc. of WI’08, pp.432–437 (2008).

[8] Hattori, S., Tezuka, T., and Tanaka, K.: “Mining the Web for
Appearance Description,” Proc. of DEXA’07, LNCS Vol.4653,
pp.790–800 (2007).

[9] Hattori, S.: “Peculiar Image Search by Web-extracted Appear-
ance Descriptions,” Proc. of SoCPaR’10, pp.127–132 (2010).

[10] Japan Meteorological Agency, http://www.jma.go.jp/jma/
indexe.html (2011).

[11] Google Blog Search, http://blogsearch.google.co.jp/ (2011).

904


