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Abstract—Many researches on mining the Web, especially
Social Networking Media such as weblogs and microblogging
sites which seem to store vast amounts of information about
human societies, for knowledge about various phenomena and
events in the physical world have been done actively, and
Web applications with Web-mined knowledge have begun to
be developed for the public. However, there is no detailed
investigation on how accurately Web-mined data reflect real-
world data. It must be problematic to idolatrously utilize the
Web-mined data in public Web applications without ensur-
ing their accuracy sufficiently. Therefore, this paper defines
spatio-temporal Web Sensors by analyzing Twitter, Facebook,
weblogs, news sites, or the whole Web for a target natural
phenomenon, and tries to validate the potential and reliability
of the Web Sensors’ spatio-temporal data by measuring the
coefficient correlation with Japanese weather, earthquake, and
influenza statistics per week by region as real-world data.

Keywords-Web mining; Web credibility; Web Sensor; spatio-
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I. INTRODUCTION

In recent years, how to make physical spaces smarter

has become one of the hottest topics in the research field

of ubiquitous/pervasive computing. Smart Spaces are often

physically isolated environments such as rooms, which are

made smart by various information and communication

technologies. They would be much more convenient for

information access in the future. Meanwhile, information

security has also become very significant in any situation,

especially in public places such as indoor work places, edu-

cational facilities, healthcare centers and so on. The amount

of physical or virtual information resources which should be

protected in the physical world grows exponentially.

Physical environments are becoming smart but not always

secure. When a virtual (computational) information resource

is requested to access by a user via an output device, conven-

tional access control systems make a decision on whether the

user should be granted or denied to access the resource based

on its access policies and surely enforce the access decision.

However, even if the requester is authorized by it, it should

not be immediately offered to her via the output device,

because there might be its unauthorized users as well as the

authorized requester around the output device, especially in

public places. A user trying to visit a physical environment

might in turn be unexpectedly exposed to her unwanted

information access. For instance, although she does not want

to know about a football game that she had recorded on

video to watch later, she unfortunately encounters its result

via an output device embedded in her train. Meanwhile,

when a user enters a physical environment, the user might

hate its physical characteristics (e.g., degrees of dismal and

danger) and/or be forced to access her unwanted information

resources unexpectedly. This paper proposes a method to

extract information for making access or entry decisions in

Secure Spaces [1] from very large text corpora such as the

Web, and improve the Secure Spaces by adding the concept

of Web Sensors [2–4], in order to enable users to specify

their access policies by keyword-based expressions about

their unwanted physical spaces.

The former Web world did not have a familiar relationship

with the physical world, and it is not too much to say that

the former Web world was isolated and independent of the

physical world. But in recent years, the explosively-growing

Web world has had more and more familiar relationship with

the physical world, as the use of the Web, especially UGM

(User Generated Media) such as weblogs, WOM (Word of

Mouth) sites, and SNS (Social Networking Services), has

become much more popular with various people without

distinction of age, sex, or country.

Many researches on mining the Web, especially Social

Networking Media such as weblogs and microblogging sites

which seems to store vast amounts of information about

human societies, for knowledge about various phenomena

and events in the physical world have been done very

actively. For instance, opinion and reputation extraction [5],

[6] of various products and services provided in the physical

world, experience mining [7], [8] of various phenomena

and events held in the physical world, and concept hier-

archy (semantics) extraction such as is-a/has-a relationships

[9–11] and appearance (look and feel) extraction [12–17]

of physical objects in the physical world. Meanwhile, Web

applications with Web-mined knowledge have begun to be

developed for the public, and more and more ordinary people

actually utilize them as vital information for choosing better
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products, services, and actions in the physical world.

However, there is no detailed investigation on how accu-

rately Web-mined data about a phenomenon or event held in

the physical world reflect real-world data. It is not difficult

for us to extract some kind of the potential knowledge data

from the Web by using various text mining techniques, and

it might be not problematic just to enjoy browsing the Web-

extracted data. But while choosing better products, services,

and actions in the physical world, it must be problematic

to idolatrously utilize the Web-mined data in public Web

applications without ensuring their accuracy sufficiently.

This paper defines spatio-temporal Web Sensors by ana-

lyzing SNS sites such as Twitter and Facebook, weblogs,

news sites, or the whole Web for a target natural phe-

nomenon such as rainfall, snowfall, earthquake, and in-

fluenza in the physical world. And this paper tries to validate

the potential and reliability of the Web Sensors’ spatio-

temporal data by measuring the coefficient correlation with

Japanese weather (rainfall and snowfall) and earthquake

(number of felt quakes) statistics of Japan Meteorological

Agency [18], and influenza (reports of influenza virus iso-

lation/detection) statistics of National Institute of Infectious

Diseases [19] per week by region as real-world data.

The remainder of this paper is organized as follows.

Section II introduces Secure Spaces with Web Sensors.

Section III defines spatio-temporal Web Sensors with various

kinds of Web documents. Section IV validates the potential

and reliability of the Web Sensors’ spatio-temporal data.

Section V concludes this paper.

II. SECURE SPACES

To build Secure Spaces [1] in the physical world by using

space entry control based on their dynamically changing

contents such as their visitors, physical/virtual information

resources via their embedded output devices, each Secure

Space requires the following facilities as shown in Figure 1.

• Space Management: is responsible for managing a Se-

cure Space, i.e., for constantly figuring out its contents

such as its visitors, its embedded physical information

resources and virtual information resources outputted

via its embedded output devices and also for ad-hoc

making an authorization decision on whether an entry

request to enter the Secure Space by a visitor or a

physical/virtual information resource should be granted

or denied, and for notifying the entry decisions to the

Electrically Lockable Doors or enforcing entry control

over virtual information resources according to the

entry decisions by itself.

• User/Object Authentication: is responsible for authen-

ticating what physical entity such as a user or a physical

information resource requests to enter or exit the Secure

Space, e.g., by using Radio Frequency IDentification or

biometrics technologies, and also for notifying it to the

Space Management.

• Electrically Lockable Door: is responsible for elec-

trically locking or unlocking itself, i.e., for assuredly

enforcing entry control over physical entities such as

users and physical information resources, according to

instructions by the Space Management.

• Physically Isolating Opaque Wall: is responsible for

physically isolating inside a Secure Space from outside

there with regard to information access, i.e., for validat-

ing the basic assumption that any user inside a Secure

Space can access any resource inside the Secure Space

while any user outside the Secure Space can never any

resource inside the Secure Space.

To protect us from our unwanted characteristics of phys-

ical spaces as well as our unauthorized contents of physical

spaces, the following additional facilities are required.

• Real Sensor: is responsible for physically sensing

inside a Secure Space for its physical characteristics

to make access decisions in the Secure Space and

also for notifying the sensor data stream to the Space

Management. For instance, thermometers, hygrometers,

(security) cameras, and so forth.

• Web Sensor: is responsible for logically sensing the

Web, especially Social Networking Media such as

weblogs and microblogging sites, for the approximate

characteristics of each Secure Space to make access

decisions in the Secure Space and also for notifying

the Web-mined data to the Space Management. Note

that to use Web Sensors, any Secure Space does not

have to equip the extra devices unlike Real Sensors.
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III. SPATIO-TEMPORAL WEB SENSORS

This section defines the simplest Web Sensor and its

spatiotemporally-normalized Web Sensor per week by region

to mine SNS sites such as Twitter and Facebook, weblogs,

news sites, or the whole Web for spatio-temporal data about

a target natural phenomenon such as rainfall, snowfall,

earthquake, and influenza in the physical world.

First, the simplest Web Sensor with a geographical space

s, e.g., one of 47 prefectures in Japan such as “ ”

(Tokyo) and “ ” (Hokkaido), a time period t, e.g.,

a week such as “2012/1/2 – 2012/1/8” (1st week) and

“2012/4/30 – 2012/5/6” (18th week), and a Japanese key-

word kw representing a target phenomenon in the physical

world, e.g., “ ” (rain), “ ” (snow), “ ” (earthquake),

and “ ” (influenza), by analyzing a corpus c
of Web documents, e.g., Twitter, Facebook, weblogs, news

sites, and the whole Web:

wsc
0(kw, s, t) := dfct(["kw" & "s"]),

Table I
COEFFICIENT CORRELATION OF SIMPLEST WEB SENSOR’S

SPATIO-TEMPORAL DATA WITH STATISTICS.
(WEB CORPUS c: Twitter.com)

������kw
Stats

Rain Snow Earthquake Influenza

0.23662 0.08918 -0.06320 -0.48524
(rain) ±0.30633 ±0.61574 ±0.17826 ±0.08673

0.16155 0.22374 -0.07155 -0.12197
(snow) ±0.20154 ±0.56503 ±0.19502 ±0.19852

0.18220 0.05189 -0.03678 -0.55301
(earthquake) ±0.28792 ±0.64425 ±0.19762 ±0.10032

0.12026 0.22577 -0.00470 -0.05639
(influenza) ±0.19316 ±0.53940 ±0.20210 ±0.22805

iPad 0.24009 0.07906 -0.07354 -0.53527
(iPad) ±0.31883 ±0.62598 ±0.19038 ±0.08530

0.18799 0.10988 -0.06083 -0.48652
(Olympic) ±0.29944 ±0.60963 ±0.19541 ±0.11060

0.22158 0.13265 -0.01995 -0.40714
(power-saving) ±0.36260 ±0.58592 ±0.19466 ±0.08649

Table III
COEFFICIENT CORRELATION OF SIMPLEST WEB SENSOR’S

SPATIO-TEMPORAL DATA WITH STATISTICS.
(WEB CORPUS c: Facebook.com)

������kw
Stats

Rain Snow Earthquake Influenza

0.21670 0.15997 -0.01841 -0.38273
(rain) ±0.33216 ±0.56654 ±0.19186 ±0.09798

0.15266 0.18868 -0.01217 -0.27948
(snow) ±0.36949 ±0.55368 ±0.23438 ±0.14262

0.19107 0.18168 -0.00518 -0.32333
(earthquake) ±0.34634 ±0.55805 ±0.24029 ±0.12727

0.11445 0.27713 -0.04556 -0.05711
(influenza) ±0.27793 ±0.51909 ±0.20378 ±0.21462

iPad 0.20459 0.18198 -0.01551 -0.31515
(iPad) ±0.35018 ±0.54743 ±0.22547 ±0.09223

0.18384 0.19791 -0.02841 -0.26471
(Olympic) ±0.32788 ±0.55462 ±0.21757 ±0.14440

0.19600 0.18563 0.01399 -0.33381
(power-saving) ±0.34995 ±0.54833 ±0.22550 ±0.10203

where dfct([q]) stands for the Frequency of Web Documents

retrieved from the corpus c by submitting the search query

q with the custom time range t to Google Web Search [20],

and & stands for an AND operator.

Next, the spatiotemporally-normalized Web Sensor by the

frequency dfct(["s"]) of Web documents from the corpus

c by submitting the geographical space s with the custom

time range t to Google Web Search:

wsc
1(kw, s, t) := wsc

0(kw, s, t) / dfct(["s"]).

IV. EXPERIMENT

This section shows several experimental results to inves-

tigate the potential and reliability of Web Sensors’ spatio-

temporal data by measuring the coefficient correlation with

Japanese weather (rainfall and snowfall) and earthquake

(number of felt quakes) statistics of Japan Meteorological

Agency [18], and influenza (reports of influenza virus iso-

lation/detection) statistics of National Institute of Infectious

Diseases [19] per week by region as real-world data.

Table II
COEFFICIENT CORRELATION OF NORMALIZED WEB SENSOR’S

SPATIO-TEMPORAL DATA WITH STATISTICS.
(WEB CORPUS c: Twitter.com)

������kw
Stats

Rain Snow Earthquake Influenza

0.26642 0.09992 -0.05636 -0.46133
(rain) ±0.30635 ±0.61168 ±0.18292 ±0.11744

0.10202 0.37743 -0.04459 0.17167
(snow) ±0.29691 ±0.49326 ±0.20590 ±0.31227

0.15882 0.05840 0.00862 -0.51825
(earthquake) ±0.29948 ±0.64293 ±0.23269 ±0.19808

0.07595 0.32434 0.03146 0.13096
(influenza) ±0.21618 ±0.50819 ±0.20590 ±0.30780

iPad 0.25559 0.09372 -0.06644 -0.51100
(iPad) ±0.31306 ±0.62301 ±0.21744 ±0.12538

0.17916 0.15635 -0.05279 -0.39658
(Olympic) ±0.29932 ±0.59256 ±0.21885 ±0.22361

0.20620 0.15835 0.01477 -0.35154
(power-saving) ±0.37025 ±0.57762 ±0.23811 ±0.14936

Table IV
COEFFICIENT CORRELATION OF NORMALIZED WEB SENSOR’S

SPATIO-TEMPORAL DATA WITH STATISTICS.
(WEB CORPUS c: Facebook.com)

������kw
Stats

Rain Snow Earthquake Influenza

0.20736 0.20409 0.01078 -0.30857
(rain) ±0.30370 ±0.54480 ±0.19348 ±0.19523

0.08581 0.27189 0.01377 -0.13029
(snow) ±0.35320 ±0.51001 ±0.21756 ±0.21534

0.17640 0.23735 0.01862 -0.21980
(earthquake) ±0.32238 ±0.54338 ±0.23211 ±0.20192

0.08867 0.31717 -0.03570 0.02592
(influenza) ±0.26080 ±0.51409 ±0.21035 ±0.23787

iPad 0.14091 0.22204 0.00769 -0.23436
(iPad) ±0.34892 ±0.53201 ±0.23840 ±0.17717

0.12751 0.23357 -0.02222 -0.17130
(Olympic) ±0.30789 ±0.55150 ±0.21688 ±0.20456

0.16572 0.22429 0.04081 -0.27228
(power-saving) ±0.33132 ±0.53446 ±0.25896 ±0.16126
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Table V
COEFFICIENT CORRELATION OF SIMPLEST WEB SENSOR’S

SPATIO-TEMPORAL DATA WITH STATISTICS.
(WEB CORPUS c: Blog)

������kw
Stats

Rain Snow Earthquake Influenza

0.29395 0.13594 -0.04185 -0.35697
(rain) ±0.31520 ±0.63432 ±0.21323 ±0.28011

-0.18492 0.55921 0.09311 0.55156
(snow) ±0.27629 ±0.31716 ±0.21320 ±0.17017

0.06482 0.25580 0.04428 -0.12773
(earthquake) ±0.21913 ±0.53980 ±0.28048 ±0.34642

-0.14449 0.54445 0.14408 0.63923
(influenza) ±0.24131 ±0.36887 ±0.25318 ±0.22427

iPad 0.05968 0.19241 0.00877 -0.19017
(iPad) ±0.30502 ±0.57391 ±0.20037 ±0.31285

-0.05190 0.29997 0.07716 0.01624
(Olympic) ±0.24784 ±0.51207 ±0.24843 ±0.31001

0.09883 0.15892 -0.00333 -0.23072
(power-saving) ±0.23307 ±0.59217 ±0.19940 ±0.23964

Table VII
COEFFICIENT CORRELATION OF SIMPLEST WEB SENSOR’S

SPATIO-TEMPORAL DATA WITH STATISTICS.
(WEB CORPUS c: News)

������kw
Stats

Rain Snow Earthquake Influenza

0.13344 0.13382 -0.05997 -0.43215
(rain) ±0.33860 ±0.58220 ±0.18446 ±0.06097

0.06941 0.14044 -0.06593 -0.40719
(snow) ±0.31387 ±0.57729 ±0.15844 ±0.06200

0.09941 0.13538 -0.06301 -0.42320
(earthquake) ±0.31280 ±0.58130 ±0.16567 ±0.05861

0.08328 0.13419 -0.06458 -0.42377
(influenza) ±0.33843 ±0.58251 ±0.17277 ±0.06083

iPad 0.06112 0.13425 -0.06143 -0.41898
(iPad) ±0.32254 ±0.58221 ±0.16809 ±0.05938

0.11054 0.13548 -0.05789 -0.42661
(Olympic) ±0.33833 ±0.58129 ±0.17500 ±0.05977

0.11020 0.13920 -0.05730 -0.41990
(power-saving) ±0.32801 ±0.57802 ±0.17297 ±0.05753

Table IX
COEFFICIENT CORRELATION OF SIMPLEST WEB SENSOR’S

SPATIO-TEMPORAL DATA WITH STATISTICS.
(WEB CORPUS c: Web)

������kw
Stats

Rain Snow Earthquake Influenza

-0.03267 0.24338 0.02747 -0.05891
(rain) ±0.28756 ±0.53230 ±0.24844 ±0.26059

0.07769 0.30493 0.03006 0.17868
(snow) ±0.24018 ±0.49643 ±0.22265 ±0.27185

0.12454 0.14421 -0.08739 -0.32519
(earthquake) ±0.30459 ±0.60138 ±0.22066 ±0.27176

-0.03929 0.47917 0.09176 0.50688
(influenza) ±0.18869 ±0.38286 ±0.24970 ±0.21110

iPad -0.00767 0.28349 -0.00584 -0.14336
(iPad) ±0.27006 ±0.50922 ±0.23194 ±0.32602

0.08059 0.32244 -0.02021 0.10205
(Olympic) ±0.28171 ±0.46942 ±0.20856 ±0.29141

0.01929 0.20801 -0.00943 -0.24271
(power-saving) ±0.25848 ±0.55460 ±0.22373 ±0.20521

Table VI
COEFFICIENT CORRELATION OF NORMALIZED WEB SENSOR’S

SPATIO-TEMPORAL DATA WITH STATISTICS.
(WEB CORPUS c: Blog)

������kw
Stats

Rain Snow Earthquake Influenza

0.25657 0.15614 -0.03172 -0.28262
(rain) ±0.30347 ±0.61916 ±0.21172 ±0.33312

-0.13444 0.49374 0.08073 0.48383
(snow) ±0.24341 ±0.38649 ±0.20615 ±0.20563

0.07327 0.24780 0.04055 -0.10453
(earthquake) ±0.27358 ±0.54817 ±0.25169 ±0.36255

-0.14369 0.543416 0.14304 0.64430
(influenza) ±0.23352 ±0.36638 ±0.24788 ±0.22469

iPad 0.05945 0.19711 0.00652 -0.17697
(iPad) ±0.31249 ±0.56959 ±0.20168 ±0.33550

-0.02743 0.29705 0.06779 0.01830
(Olympic) ±0.26224 ±0.51754 ±0.21366 ±0.30728

0.09566 0.16036 -0.00526 -0.21141
(power-saving) ±0.25163 ±0.59003 ±0.19422 ±0.26796

Table VIII
COEFFICIENT CORRELATION OF NORMALIZED WEB SENSOR’S

SPATIO-TEMPORAL DATA WITH STATISTICS.
(WEB CORPUS c: News)

������kw
Stats

Rain Snow Earthquake Influenza

0.13676 0.13235 -0.06355 -0.43286
(rain) ±0.33802 ±0.58344 ±0.18571 ±0.06084

0.07290 0.13810 -0.06938 -0.41107
(snow) ±0.31723 ±0.57925 ±0.16178 ±0.06270

0.10355 0.13335 -0.06605 -0.42620
(earthquake) ±0.31363 ±0.58297 ±0.16973 ±0.05915

0.08924 0.13298 -0.06687 -0.42356
(influenza) ±0.34016 ±0.58350 ±0.17499 ±0.06196

iPad 0.06563 0.13253 -0.06478 -0.42132
(iPad) ±0.32589 ±0.58352 ±0.17136 ±0.06067

0.11397 0.13353 -0.06107 -0.42994
(Olympic) ±0.34068 ±0.58279 ±0.17831 ±0.06060

0.11354 0.13690 -0.05955 -0.42432
(power-saving) ±0.33133 ±0.57985 ±0.17704 ±0.05853

Table X
COEFFICIENT CORRELATION OF NORMALIZED WEB SENSOR’S

SPATIO-TEMPORAL DATA WITH STATISTICS.
(WEB CORPUS c: Web)

������kw
Stats

Rain Snow Earthquake Influenza

-0.16111 0.36915 0.01460 0.14595
(rain) ±0.28865 ±0.46733 ±0.23873 ±0.23775

-0.11592 0.39546 0.01305 0.26101
(snow) ±0.28484 ±0.44067 ±0.22484 ±0.23662

-0.04259 0.24796 -0.09056 -0.12469
(earthquake) ±0.17815 ±0.53549 ±0.25741 ±0.26405

-0.16293 0.51123 0.05399 0.51224
(influenza) ±0.24857 ±0.36023 ±0.23129 ±0.16315

iPad -0.14144 0.37823 -0.01702 0.04613
(iPad) ±0.23778 ±0.45093 ±0.26398 ±0.28411

-0.07747 0.40524 -0.02750 0.22656
(Olympic) ±0.30861 ±0.42514 ±0.17989 ±0.20725

-0.13365 0.31067 -0.01837 -0.03894
(power-saving) ±0.29216 ±0.49778 ±0.22062 ±0.26432
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Tables I to X show the coefficient correlation between

the simplest or spatiotemporally-normalized Web Sensor’s

spatio-temporal data for a Japanese keyword kw with a

Web corpus c and each of four kinds of Japanese statistics.

They show that weblogs are the most appropriate corpus

of Web documents for Web Sensors because the Web

Sensors by analyzing weblogs give the highest coefficient

correlation with any kind of Japanese statistics, while

SNS sites such as Twitter and Facebook which seem

to store vaster amounts of information about human

societies are not so appropriate for Web Sensors to extract

spatio-temporal data about natural phenomena, and that

the simplest Web Sensor by analyzing weblogs is slightly

Coefficient Correlation
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0.45 – 0.499

0.35 – 0.449

0.25 – 0.349
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0.05 – 0.149

0.05 – 0.049

Figure 2. Spatial Dependency of Coefficient Correlation between the
Simplest Web Sensor with Blogs and Rainfall Stats.

Coefficient Correlation
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0.05 – 0.149
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Figure 4. Spatial Dependency of Coefficient Correlation between the
Simplest Web Sensor with Blogs and Snowfall Stats.

superior to the spatiotemporally-normalized Web Sensor,

while in contrast the spatiotemporally-normalized Web Sen-

sor by analyzing SNS sites is superior to the simplest Web

Sensor. And also the Web Sensors by analyzing SNS sites

show negative correlation coefficient for negative phenom-

ena such as earthquake and influenza.

Figures 2 to 9 show the spatial dependency of correlation

coefficient of the simplest Web Sensor by analyzing

weblogs or the spatiotemporally-normalized Web Sensor by

analyzing Tweets with four kinds of Japanese statistics. They

show that the simplest Web Sensor by analyzing weblogs

has less prefectures with too low coefficient correlation

for snowfall and influenza stats, while two kinds of Web

Coefficient Correlation

0.65 –

0.60 – 0.649 

0.55 – 0.599 

0.50 – 0.549

0.45 – 0.499

0.35 – 0.449

0.25 – 0.349

0.15 – 0.249

0.05 – 0.149

0.05 – 0.049

Figure 3. Spatial Dependency of Coefficient Correlation between the
Normalized Web Sensor with Twitter and Rainfall Stats.
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0.15 – 0.249

0.05 – 0.149

0.05 – 0.049

Figure 5. Spatial Dependency of Coefficient Correlation between the
Normalized Web Sensor with Twitter and Snowfall Stats.
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Sensors are not much different for rainfall and earthquake

stats. Figures 4 and 5 show that more southern prefectures

where it snows very little have higher coefficient correlation

with snowfall stats. And also Figure 8 and 9 show that the

simplest Web Sensor by analyzing weblogs fortunately gives

enough high coefficient correlation with influenza stats to

almost all prefectures in Japan, while the spatiotemporally-

normalized Web Sensor by analyzing Tweets unfortunately

gives too low coefficient correlation to numerous prefectures.

Figures 10 to 17 show the spatio-temporal data of a

Japanese prefecture s per week t for four kinds of natural

phenomena by the simplest or spatiotemporally-normalized

Web Sensor with weblogs and four kinds of Japanese

Coefficient Correlation

0.65 –

0.60 – 0.649 
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0.50 – 0.549

0.45 – 0.499
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Figure 6. Spatial Dependency of Coefficient Correlation between the
Simplest Web Sensor with Blogs and Earthquake Stats.
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Figure 8. Spatial Dependency of Coefficient Correlation between the
Simplest Web Sensor with Blogs and Influenza Stats.

statistics as real-world databases. They show that the sim-

plest and the spatiotemporally-normalized Web Sensors with

weblogs are not much different, but rather the latter decays

for some cases. Figures 16 and 17 show the most definite co-

efficient correlation between Web Sensors’ spatio-temporal

data and influenza stats’ real-world data. Figures 12 and 13

also show more definite coefficient correlation with snowfall

stats’ real-world data, but unnaturally steep rising for only

16th to 18th weeks. And the other figures show that the

Web Sensors’ spatio-temporal data exhibit less volatility than

rainfall and earthquake stats’ real-world data. In the near

future, the author has to investigate causes of these problems

in more detail to improve the functions of Web Sensors.
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Figure 7. Spatial Dependency of Coefficient Correlation between the
Normalized Web Sensor with Twitter and Earthquake Stats.
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Figure 9. Spatial Dependency of Coefficient Correlation between the
Normalized Web Sensor with Twitter and Influenza Stats.
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Figure 10. Simplest Web Sensor with Blogs and Rainfall Stats.
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Figure 12. Simplest Web Sensor with Blogs and Snowfall Stats.
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Figure 14. Simplest Web Sensor with Blogs and Earthquake Stats.
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Figure 16. Simplest Web Sensor with Blogs and Influenza Stats.

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17

t : No. of week

Rainfall stats

ws  (" "," ", t)

(rain)   (Ibaraki)

b
1

Correlation: 0.36209

Figure 11. Normalized Web Sensor with Blogs and Rainfall Stats.
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Figure 13. Normalized Web Sensor with Blogs and Snowfall Stats.
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Figure 15. Normalized Web Sensor with Blogs and Earthquake Stats.

0.1

0.25

0.4

0.55

0.7

0.85

1

1.15

0

2000

4000

6000

8000

10000

12000

14000

1 3 5 7 9 11 13 15 17

t : No. of week

Influenza stats

ws  (" ",

" ", t)
(Aichi)

b
1

Correlation: 0.96735

(influenza)

Figure 17. Normalized Web Sensor with Blogs and Influenza Stats.
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V. CONCLUSION

This paper has defined the simplest Web Sensor and

its spatiotemporally-normalized Web Sensor per week by

region to mine SNS sites such as Twitter and Facebook,

weblogs, news sites, or the whole Web for spatio-temporal

data about a target phenomenon such as rainfall, snowfall,

earthquake, and influenza in the physical world. And this

paper has shown several experimental results to investigate

the potential and reliability of these Web Sensors’ spatio-

temporal data by measuring the correlation coefficient with

Japanese weather, earthquake, and influenza statistics per

week by region as real-world data. As a result, this paper has

found that weblogs are the most appropriate corpus of Web

documents for Web Sensors, while SNS sites such as Twitter

and Facebook are not so appropriate. The Web Sensors with

SNS sites show negative correlation coefficient for negative

phenomena such as earthquake and influenza.
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