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Abstract—We experience or forecast various phenomena (e.g.,
rain, snow, earthquake) in the physical world, while we carry
out various actions (e.g., blogging, searching, e-shopping) in
the Web world. There have been many researches to mine the
exploding Web world for knowledge about various phenomena
and events in the physical world, and also Web services with the
Web-mined knowledge have been made available for the public.
However, there are few detailed investigations on how accurately
Web-mined data reflect physical-world data. It must be socially-
problematic to idolatrously utilize the Web-mined data in public
Web services without ensuring their accuracy sufficiently. This
paper introduces temporally-shifted Web Sensors with a temporal
shift parameter δ to extract spatiotemporal numerical value
about a physical phenomenon from Web documents searched by
linguistic keyword(s) representing the physical phenomenon, and
analyzes the spatiotemporal dependency of the temporal shift
parameter δ with respect to their coefficient correlation with
Japan Meteorological Agency’s spatiotemporal statistics.

I. INTRODUCTION

We experience or forecast various phenomena (e.g., rain,
snow, earthquake, influenza, traffic accidents) in the physical
world, while we carry out various actions (e.g., blogging,
searching, e-shopping) in the Web world. Recently, many
researches to mine a huge amount of Web documents in the
explosively-growing Web, especially User Generated Content
such as weblogs, microblogs (e.g., Twitter), Word of Mouth
sites, and Social Networking Services (e.g., Facebook), for
knowledge about various phenomena and events in the physical
world have been conducted actively. For example, opinion and
reputation extraction [1], [2] of various products and services
in the physical world, experience mining [3], [4] of various
phenomena and events held in the physical world, and concept
hierarchy (semantics) extraction such as is-a/has-a relation-
ships [5–10] and visual appearance (look and feel) extraction
[10–14] of physical objects in the physical world. Meanwhile,
Web services with Web-mined knowledge have been made
available for the public, and more and more ordinary people
actually utilize them as important information for choosing
better products, services, and actions in the physical world.

However, there are few detailed investigations [15–17] on
how accurately Web-mined data about a target phenomenon or
event in the physical world reflect physical-world data. It is not
difficult to mine the Web for some kind of potential knowledge
data by using various text mining techniques, and it might be
not problematic just to enjoy browsing Web-mined knowledge
data. But while choosing better products, services, and actions

in the physical world, it must be socially-problematic to im-
moderately utilize the Web-mined data in public Web services
without ensuring their accuracy sufficiently.

The author has defined Web Sensors [18–23] to sense
the Web (i.e., mine various actions in the Web world) for a
target phenomenon in the physical world, and investigated how
correlated Web-sensed spatiotemporal data are with physically-
sensed spatiotemporal data as shown in Fig. 1. And also the
author is integrating Web Sensors into Smart Spaces [24] and
Secure Spaces [25–27].

This paper introduces the simplest and spatiotemporally-
normalized Web Sensors and temporally-shifted Web Sensors
with a temporal shift parameter δ to extract spatiotemporal
numerical value about a physical phenomenon from Web
documents searched by linguistic keyword(s) representing the
physical phenomenon, and analyzes the spatiotemporal depen-
dency of the temporal shift parameter δ (i.e., how the optimal
value of the temporal shift parameter δ varies depending
on geographical spaces and/or time periods) with respect to
their coefficient correlation with Japan’s rainfall, snowfall, and
earthquake statistics per day by region (e.g., 47 prefectures) of
Japan Meteorological Agency (JMA) [28].

The rest of this paper is organized as follows. Section II
introduces temporally-shifted Web Sensors to sense the Web
for spatiotemporal numerical value about physical phenomena.
Section III analyzes the spatiotemporal dependency of tempo-
ral shift parameter δ with respect to their coefficient correlation
with Japan’s rainfall, snowfall, and earthquake statistics by
Japan Meteorological Agency. Section IV concludes this paper.
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Fig. 1. Are Web Sensors Correlated with Real Sensors?
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II. TEMPORALLY-SHIFTED WEB SENSORS

This section introduces the simplest and spatiotemporally-
normalized Web Sensors and temporally-shifted Web Sensors
to sense the Web for spatiotemporal numerical value dependent
on such a space as 47 prefectures in Japan and such a time
period as days and weeks in 2011 about such a physical
phenomenon as rainfall, snowfall, and earthquake.

First, the simplest and spatiotemporally-normalized Web
Sensor [18] by analyzing only Web documents with a geo-
graphic space s, e.g., one of 47 prefectures such as “Hokkaido”
and “Kyoto,” a time period t, e.g., one of 52 weeks in 2011
such as from January 1st to January 7th and from December
24th to December 30th, and a linguistic (e.g., Japanese)
keyword kw representing a targeted physical phenomenon,
e.g., “rain,” “snow,” and “earthquake,” is defined as

ws(kw, s, t) :=
dft(["kw" AND "s"])

dft(["s"])
, (1)

where dft([q]) stands for the Frequency of Web Documents
searched from the Web, especially the Weblog, by submitting
the search query q with the custom time range t to Google
Web Search [29]. Note that the Weblog is superior to the whole
Web, Twitter, Facebook, and News as a corpus of documents
used by Web Sensors [19].

To investigate how temporally-shifted Web-sensed data are
from real-sensed data, the temporally-shifted Web Sensor [20]
with a temporal shift parameter δ [day] is defined as

wsδ(kw, s, t) := ws(kw, s, t + δ). (2)

As shown in Fig. 2, Shifted-to-Past Web Sensors for a physical
phenomenon (e.g., earthquake) when the temporal shift pa-
rameter δ is positive (e.g., +14) calculate the numerical value
dependent on a geographical space (e.g., Hokkaido prefecture
in Japan) and a time period t (e.g., one of 52 weeks in 2011)
by analyzing Web documents uploaded δ day(s) after the time
period t (i.e., infer the past from the future), while Shifted-
to-Future Web Sensors for a physical phenomenon when the
temporal shift parameter δ is negative (e.g., −14) calculate
the numerical value dependent on a geographical space and a
time period t by analyzing Web documents uploaded |δ| day(s)
before the time period t (i.e., infer the future from the past).
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Fig. 2. Temporally-Shifted Web Sensors for Earthquake and JMA’s Weekly
Earthquake Statistics in Hokkaido Prefecture (ISO 3166-2:JP-01), 2011.

III. SPATIO-TEMPORAL DEPENDENCY ANALYSIS OF
TEMPORAL SHIFT PARAMETER δ

The previous section introduces Web Sensors with a tempo-
ral shift parameter δ to extract spatiotemporal numerical value
about a physical phenomenon from the Weblog. To optimize
the temporal shift parameter δ, this section analyzes the spa-
tiotemporal dependency of the temporal shift parameter δ (i.e.,
how the optimal value of the temporal shift parameter δ varies
depending on geographical spaces and/or time periods) with
respect to their coefficient correlation with Japan’s rainfall,
snowfall, and earthquake statistics per day by region (e.g., 47
prefectures) of Japan Meteorological Agency (JMA) [28].

Various different features of three kinds of target physical
phenomena in Japan are summarized as follows.

1) Rainfall: has spikes in any seasons and regions, and
is forecasted in advance by JMA and others.

2) Snowfall: has spikes in only winter season, and
is forecasted in advance by JMA and others.

3) Earthquake: has sharper spikes anytime potentially,
and is not yet predicted well in advance.

Fig. 3, Fig. 11, and Fig. 19 show the average of coefficient
correlation of daily (47 prefectures × 1 day × 364 data) vs.
weekly Web Sensors (47 prefectures × 1 week × 52 data)
depending on their temporal shift parameter δ for rainfall,
snowfall, and earthquake, respectively. Fig. 3 shows that Not-
Shifted Web Sensor whose temporal shift parameter δ is
(almost) ±0 gives the best correlation for rainfall. Meanwhile,
Fig. 11 shows that Shifted-to-Future Web Sensor whose δ is
negative gives the best correlation (gains avg. 5% over δ = 0)
for snowfall which is forecasted in advance, and Fig. 19 shows
that Shifted-to-Past Web Sensor whose δ is positive gives the
best correlation (gains avg. 16% over δ = 0) for earthquake
which cannot yet be predicted well in advance.

A. Temporal Dependency Analysis

Fig. 4, Fig. 12, and Fig. 20 analyze the optimal temporal
shift parameter δ and coefficient correlation of daily Web
Sensors (47 prefectures × 1 day × 29 data) depending on
49 time periods in 2011 (e.g., 29 days of 2011/1/1-1/29
or 2011/12/3-12/31) for rainfall, snowfall, and earthquake,
respectively. Fig. 4 shows that the optimal δ and correlation
of Web Sensors for rainfall are not much dependent on time
periods except winter season (in Jan. to Mar.) when it may not
rain but snow. Meanwhile, Fig. 12 shows that the optimal δ
of Web Sensors for snowfall varies more widely, and Fig. 20
shows that both the optimal δ and correlation of Web Sensors
for earthquake varies the most widely. Fig. 20 also shows that
more shaken time periods are given higher correlation by the
Great East Japan Earthquake (3.11).

B. Spatial Dependency Analysis

Figs. 5 to 10, Figs. 13 to 18, and Figs. 21 to 26 show the
optimal temporal shift parameter δ and coefficient correlation
of daily Web Sensors vs. weekly Web Sensors depending
on 47 prefectures (geographical spaces) in Japan for rainfall,
snowfall, and earthquake, respectively. They show that the
optimal δ for rainfall is not much dependent on prefectures,
while the optimal δ for snowfall and earthquake varies widely.
And that more shaken prefectures are given higher correlation.
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Fig. 3. Avg. Coefficient Correlation of Daily/Weekly Web Sensors
on Temporal Shift Parameter δ. ( Daily: 1 day × 364 data,

Weekly: 1 week × 52 data )
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Fig. 4. Temporal Dependency Analysis of Optimal Temporal Shift Param δ
and Coefficient Correlation for Daily Web Sensors.

( Daily: 1 day × 29 data )
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Fig. 5. Spatial Dependency Analysis of Optimal
Temporal Shift Parameter δ and Coefficient Corre-
lation for Weekly Web Sensors.

( Weekly: 1 week × 52 data )
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Fig. 6. Spatial Distribution of Optimal Tempo-
ral Shift Parameter δ for Weekly Web Sensors.

( Weekly: 1 week × 52 data )
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Fig. 7. Spatial Distribution of Coefficient Corre-
lation for Weekly Web Sensors.

( Weekly: 1 week × 52 data )
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Fig. 8. Spatial Dependency Analysis of Optimal
Temporal Shift Parameter δ and Coefficient Corre-
lation for Daily Web Sensors.

( Daily: 1 day × 364 data )
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Fig. 9. Spatial Distribution of Optimal Tempo-
ral Shift Parameter δ for Daily Web Sensors.

( Daily: 1 day × 364 data )
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Fig. 10. Spatial Distribution of Coefficient Cor-
relation for Daily Web Sensors.

( Daily: 1 day × 364 data )
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Fig. 11. Avg. Coefficient Correlation of Daily/Weekly Web Sensors
on Temporal Shift Parameter δ. ( Daily: 1 day × 364 data,

Weekly: 1 week × 52 data )
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Fig. 12. Temporal Dependency Analysis of Optimal Temporal Shift Param δ
and Coefficient Correlation for Daily Web Sensors.

( Daily: 1 day × 29 data )
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Fig. 13. Spatial Dependency Analysis of Optimal
Temporal Shift Parameter δ and Coefficient Corre-
lation for Weekly Web Sensors.

( Weekly: 1 week × 52 data )
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Fig. 14. Spatial Distribution of Optimal Tempo-
ral Shift Parameter δ for Weekly Web Sensors.

( Weekly: 1 week × 52 data )
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Fig. 15. Spatial Distribution of Coefficient Cor-
relation for Weekly Web Sensors.

( Weekly: 1 week × 52 data )
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Fig. 16. Spatial Dependency Analysis of Optimal
Temporal Shift Parameter δ and Coefficient Corre-
lation for Daily Web Sensors.

( Daily: 1 day × 364 data )
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Fig. 17. Spatial Distribution of Optimal Tem-
poral Shift Parameter δ for Daily Web Sensors.

( Daily: 1 day × 364 data )
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Fig. 18. Spatial Distribution of Coefficient Cor-
relation for Daily Web Sensors.

( Daily: 1 day × 364 data )
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Fig. 19. Avg. Coefficient Correlation of Daily/Weekly Web Sensors
on Temporal Shift Parameter δ. ( Daily: 1 day × 364 data,
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Fig. 20. Temporal Dependency Analysis of Optimal Temporal Shift Param δ
and Coefficient Correlation for Daily Web Sensors.

( Daily: 1 day × 29 data )
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Fig. 21. Spatial Dependency Analysis of Optimal
Temporal Shift Parameter δ and Coefficient Corre-
lation for Weekly Web Sensors.

( Weekly: 1 week × 52 data )

Temporal Shift Parameter δ [day]

+22 – +28 

+15 – +21 

+8 – +14

+1 – +7

0

-7 – -1

-14 – -8

-21 – -15

-28 – -22

1

2

3
5

6

7

8

12

1517

18

2224
30

283132

36

35

39

4041

42

43

4546
47

4

3.11

Fig. 22. Spatial Distribution of Optimal Tempo-
ral Shift Parameter δ for Weekly Web Sensors.

( Weekly: 1 week × 52 data )
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Fig. 23. Spatial Distribution of Coefficient Cor-
relation for Weekly Web Sensors.

( Weekly: 1 week × 52 data )
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Fig. 24. Spatial Dependency Analysis of Optimal
Temporal Shift Parameter δ and Coefficient Corre-
lation for Daily Web Sensors.

( Daily: 1 day × 364 data )
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Fig. 25. Spatial Distribution of Optimal Tem-
poral Shift Parameter δ for Daily Web Sensors.

( Daily: 1 day × 364 data )
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Fig. 26. Spatial Distribution of Coefficient Cor-
relation for Daily Web Sensors.

( Daily: 1 day × 364 data )
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IV. CONCLUSION

To investigate how correlated/temporally-shifted Web-
sensed data are with/from real-sensed data, this paper has
introduced Web Sensors with a temporal shift parameter δ
to extract spatiotemporal numerical value about a physical
phenomenon from the Weblog. And to optimize the temporal
shift parameter δ, this paper has analyzed the spatiotemporal
dependency of the temporal shift parameter δ (i.e., how the
optimal value of δ varies depending on geographical spaces
and/or time periods) with respect to their coefficient correlation
with Japan’s rainfall, snowfall, and earthquake statistics per
day by region (e.g., 47 prefectures) of Japan Meteorological
Agency. The spatiotemporal dependency analysis shows that

• The optimal temporal shift parameter δ of Web Sen-
sors depends on physical phenomena: Not-Shifted
Web Sensor whose δ is ±0 gives the best correlation
(i.e., the Weblog runs parallel to the physical world)
for rainfall, Shifted-to-Future Web Sensor whose δ
is negative gives the best (i.e., the Weblog leads the
physical world) for snowfall, and Shifted-to-Past Web
Sensor whose δ is positive gives the best (i.e., the
Weblog follows the physical world) for earthquake.

• The optimal temporal shift parameter δ and coefficient
correlation for rainfall are not much dependent on ge-
ographical spaces and time periods, while the optimal
δ for snowfall and earthquake varies more widely.

• More shaken geographical spaces and time periods are
given higher correlation between Web-sensed and real-
sensed data by the Great East Japan Earthquake.

In the future, various Web actions, e.g., not only blog-
ging and searching but also e-shopping, will be combined
to construct more high-sensitive Web Sensors. For example,
spatiotemporal e-shopping logs of umbrellas on e-commerce
sites such as Amazon, Yahoo! Shopping, and Rakuten Market
might be useful to sense the Web for spatiotemporal numerical
value about rainfall phenomenon. And also Web Sensors try to
forecast future data about a target phenomenon, interpolate lost
data of real statistics, and alert falsified data of real statistics.
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