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Abstract—In recent years, many researches to mine the exploding
Web world, especially User Generated Content (UGC) such as
weblogs, for knowledge about various phenomena and events in
the physical world have been done actively, and also Web services
with the Web-mined knowledge have begun to be developed for
the public. However, there are few detailed investigations on how
accurately Web-mined data reflect physical-world data. It must be
problematic to idolatrously utilize the Web-mined data in public
Web services without ensuring their accuracy sufficiently. Therefore,
this paper introduces the simplest Web Sensor and spatiotemporally-
normalized Web Sensor to extract spatiotemporal data about a target
phenomenon from weblogs searched by keyword(s) representing the
target phenomenon, and tries to validate the potential and reliability
of the Web-sensed spatiotemporal data by four kinds of granularity
analyses of coefficient correlation with temperature, rainfall, snowfall,
and earthquake statistics per day by region of Japan Meteorological
Agency as physical-world data: spatial granularity (region’s popula-
tion density), temporal granularity (time period, e.g., per day vs. per
week), representation granularity (e.g., “rain” vs. “heavy rain”), and
media granularity (weblogs vs. microblogs such as Tweets).

Keywords—Granularity analysis, knowledge extraction, spatiotem-
poral data mining, Web credibility, Web mining, Web sensor.

I. INTRODUCTION

THE former Web world did not have a familiar relationship

with the physical world, and it is not too much to say that

the former Web world was isolated and independent from the

physical world. But in recent years, the explosively-growing

Web world has had more and more familiar relationships with

the physical world as the use of the World Wide Web (WWW)

on the Internet, especially User Generated Content (UGC)

such as weblogs, Word of Mouth (WOM) sites, and Social

Networking Services (SNS), has become more popular with

various people without distinction of age/sex.

Many researches to mine the exploding Web, especially the

Weblog, for knowledge about various phenomena and events

in the physical world have been done actively. For example,

opinion and reputation extraction [1, 2] of various products

and services provided in the physical world, experience mining

[3, 4] of various phenomena and events held in the physical

world, and concept hierarchy (semantics) extraction [5–10]

such as is-a/has-a relationships and visual appearance (look

and feel) extraction [9, 11–14] of physical objects in the

physical world. Meanwhile, Web services with the Web-mined

knowledge have begun to be developed for the public, and

more and more ordinary people actually utilize them as very

important information for choosing better products, services,

and actions in the physical world.
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However, there are very few detailed investigations on how

accurately Web-mined data about a phenomenon or event held

in the physical world reflect physical-world data. It is not

difficult for us to extract some kind of the potential knowledge

data from the Web by using various text mining techniques,

and it might be not problematic just to enjoy browsing them.

But while choosing better products, services, and actions in the

physical world, it must be problematic to idolatrously utilize

the Web-mined data in public Web services without ensuring

their accuracy sufficiently.

This paper introduces the concept of Web Sensors [15–18],

the simplest/spatiotemporally-normalized ones, to extract spa-

tiotemporal data about such a target phenomenon as tempera-

ture, rainfall, snowfall, and earthquake from Web documents

searched by keyword(s) representing the target phenomenon,

and carries out 4 kinds of granularity analyses of coefficient

correlation with 4 kinds of physical-world statistics per day by

region of Japan Meteorological Agency (JMA) [19] to validate

the potential and reliability of the Web-sensed spatiotemporal

data for such a space as 47 prefectures and 47 prefectural

capitals in Japan and such a time period as a day and a week

in 2011. The four kinds of granularity analyses include

• Space Granularity Analysis: analyzes the spatial de-

pendency of coefficient correlation between Web-sensed

spatiotemporal data and JMA’s stats on space’s population

density. The other examples of spatial features include

population, land area, and geographic location.

• Time Granularity Analysis: analyzes the temporal de-

pendency of coefficient correlation between Web-sensed

spatiotemporal data and JMA’s stats on time’s period, e.g.,

per day vs. per week.

• Representation Granularity Analysis: analyzes the hy-

ponymy dependency of coefficient correlation between

Web-sensed spatiotemporal data and JMA’s stats on a

coarse keyword (“rain”) vs. a fine keyword (“heavy rain”)

representing a target phenomenon (e.g., rainfall).

• Media Granularity Analysis: analyzes the media de-

pendency of coefficient correlation between Web-sensed

spatiotemporal data and JMA’s stats on weblogs vs.

microblogs such as Tweets. The number of Weblog

documents is about 50 times more than the number of

Twitter (as one of microblogging sites) documents in

2011. And Tweets are restricted up to 140 characters.

The remainder of this paper is organized as follows. Section

II introduces the simplest Web Sensor and spatiotemporally-

normalized Web Sensor in Secure Spaces. Section III validates

the potential and reliability of the Web-sensed spatiotemporal

data by granularity analyses. Section IV concludes this paper.
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II. METHOD: WEB SENSORS IN SECURE SPACES

In public spaces, there are a number of different con-

tents such as visitors, and physical information resources,

and virtual information resources via their embedded output

devices. Therefore, we might unexpectedly enter the public

spaces that have our unauthorized contents and/or unwanted

characteristics, i.e., they are convenient and comfortable for

somebody but not always secure and safe for all of us. To solve

this problem, my previous works [15, 20–23] have introduced

the concept of Secure Spaces, physical environments in which

any visitor is protected from being pushed her unwanted

information resources on and also any information resource

is always protected from being accessed by its unauthorized

visitors, and the model and architecture for space entry control

and information access control based on their dynamically

changing contents.

To build Secure Spaces in the physical world by using space

entry control based on their dynamically changing contents

such as their visitors, physical/virtual information resources

via their embedded output devices, each Secure Space requires

the following facilities (as shown in Fig. 1).

• Space Management: is responsible for managing a Se-

cure Space, i.e., for constantly figuring out its contents

such as its visitors, its embedded physical information

resources and virtual information resources outputted via

its embedded output devices and also for ad-hoc making

an authorization decision on whether an entry request to

enter the Secure Space by a visitor or a physical/virtual

information resource should be granted or denied, and for

notifying the entry decisions to the Electrically Lockable

Doors or enforcing entry control over virtual information

resources according to the entry decisions by itself.

• User/Object Authentication: is responsible for authen-

ticating what physical entity such as a user or a physical

information resource requests to enter or exit the Secure

Space (e.g., by using Radio Frequency IDentification or

biometrics technologies) and also for notifying it to the

Space Management.

• Electrically Lockable Door: is responsible for elec-

trically locking or unlocking itself, i.e., for assuredly

enforcing entry control over physical entities such as

users and physical information resources, according to

instructions by the Space Management.

• Physically Isolating Opaque Wall: is responsible for

physically isolating inside a Secure Space from outside

there with regard to information access, i.e., for validating

the basic assumption that any user inside a Secure Space

can access any resource inside the Secure Space while

any user outside the Secure Space can never any resource

inside the Secure Space.

To protect us from our unwanted characteristics (e.g., de-

grees of congestion, dismal, and danger) of physical spaces

as well as our unauthorized contents, the following additional

facilities are required.

• Real Sensor: is responsible for physically sensing inside

a Secure Space for its physical characteristics to make

access decisions in the Secure Space and also for notify-

ing the sensor data stream to the Space Management. For

example, thermometers, hygrometers, (security) cameras.

• Web Sensor: is responsible for logically sensing the

Weblog for the approximate characteristics of each Secure

Space to make access decisions in the Secure Space

and also for notifying the Web-mined data to the Space

Management. Note that any Secure Space does not have

to equip the extra devices unlike Real Sensors.

This paper introduces two kinds of Web Sensors from

my previous works [15–18], the simplest Web Sensor and

spatiotemporally-normalized Web Sensor, to extract spatiotem-

poral data about such a target phenomenon as tempera-

ture, rainfall, snowfall, and earthquake from Web documents

searched by keyword(s) representing the target phenomenon.

First, the simplest Web Sensor with a geographic space s,

e.g., one of 47 prefectures such as “ ” (Hokkaido) and

47 prefectural capitals such as “ ” (Sapporo City), a time

period t, e.g., per day and per week in 2011, and a Japanese

keyword kw representing a target phenomenon in the physical

world, e.g., “ ” (hot for temperature), “ ” (rain), “ ”

(snow), and “ ” (earthquake), by analyzing a corpus c of

Web documents, the Weblog or Twitter (one of microblogging

sites), is defined as

wsc

0
(kw, s, t) := dfc

t
(["kw" & "s"]), (1)

where dfc
t
([q]) stands for the Frequency of Web Documents

searched from the corpus c by submitting the search query q
with the custom time range t to Google Web Search [24], and

& stands for an AND operator.

Next, the spatiotemporally-normalized Web Sensor by the

frequency dfc
t
(["s"]) of Web documents from the corpus c

by submitting the geographical space s with the custom time

range t to Google Web Search to clean up spatio-temporal

dependency is defined as

wsc

1
(kw, s, t) := wsc

0
(kw, s, t) / dfc

t
(["s"]). (2)
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Fig. 1 Spatio-temporal Web Sensors in Secure Spaces
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III. EXPERIMENT: GRANULARITY ANALYSES

This section carries out 4 kinds of granularity analyses of

coefficient correlation with 4 kinds of physical-world statistics

per day by region of Japan Meteorological Agency (JMA)

[19] to validate the potential and reliability of the Web-sensed

spatiotemporal data for such a space as 47 prefectures and 47

prefectural capitals in Japan and such a time period as a day

and a week in 2011. Fig. 2 shows various different features

of the four kinds of target phenomena in the physical world.

1) Temperature: changes slowly in all seasons.

2) Rainfall: has spikes in any seasons.

3) Snowfall: has spikes in only winter season.

4) Earthquake: has sharper spikes anytime potentially.

Fig. 2(4) shows that the Web Sensor can sense the sharpest

spike caused by the Great East Japan Earthquake (M9.0)

on March 11th, 2011, but cannot acutely sense the 2nd

sharpest spike caused by the earthquake (M5.1) in Hokkaido

on September 7th, 2011, and that for a while after the Great

East Japan Earthquake, its very huge effects decreasingly keep

on the Web Sensor as well as the physical world.

Fig. 3 to 6 show the granularity analyses of coefficient

correlation between the simplest Web Sensor’s spatiotemporal

data and JMA’s average temperature, rainfall amount, snowfall

amount, and number of felt quakes, respectively.

A. Space Granularity Analysis

The right columns of 4 figures (pages) analyze the spatial

dependency of coefficient correlation between Web-sensed

spatiotemporal data and JMA’s stats on space’s population

density. The smaller the space s is, the larger the deviation

of coefficient correlation in the space is.

B. Time Granularity Analysis

The left columns of 4 figures (pages) analyze the temporal

dependency of coefficient correlation between Web-sensed

spatiotemporal data and JMA’s stats on time’s period. The

larger the time period t is, the larger the average, maximum,

and deviation of coefficient correlation in the time period are.

C. Representation Granularity Analysis

The (a) vs. (b) and (c) vs. (d) of 3 figures except Fig. 3

analyze the hyponymy dependency of coefficient correlation

between Web-sensed spatiotemporal data and JMA’s stats on a

coarse keyword (e.g., “rain”) vs. a fine keyword (e.g., “heavy

rain”) representing a target phenomenon (e.g., rainfall). The

finer the keyword kw representing a target phenomenon is,

the larger the average and maximum of coefficient correlation

by Web Sensors with the keyword are.

D. Media Granularity Analysis

The (a) vs. (c) and (b) vs. (d) of 4 figures (pages) analyze

the media dependency of coefficient correlation between Web-

sensed spatiotemporal data and JMA’s stats on weblogs vs.

microblogs such as Tweets. Weblog documents tend to be

superior to Twitter (microblog) documents for Web Sensors to

extract spatiotemporal data about physical-world phenomena

from the Web.
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Fig. 2 JMA’s daily statistics and Web Sensor’s spatiotemporal data for
four physical-world phenomena in Hokkaido prefecture, 2011
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(a) using Blog documents searched by a positive keyword kw = “ ” (hot)
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(b) using Blog documents searched by a negative keyword kw = “ ” (cold)
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(c) using Twitter (Microblog) documents searched by a positive keyword kw = “ ” (hot)
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(d) using Twitter (Microblog) documents searched by a negative keyword kw = “ ” (cold)

Fig. 3 Granularity analyses of coefficient correlation between Web Sensor’s spatiotemporal data and JMA’s average temperature
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(a) using Blog documents searched by a coarse keyword kw = “ ” (rain)
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(b) using Blog documents searched by a fine keyword kw = “ ” (heavy rain)
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(c) using Twitter (Microblog) documents searched by a coarse keyword kw = “ ” (rain)
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(d) using Twitter (Microblog) documents searched by a fine keyword kw = “ ” (heavy rain)

Fig. 4 Granularity analyses of coefficient correlation between Web Sensor’s spatiotemporal data and JMA’s rainfall amount
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(a) using Blog documents searched by a coarse keyword kw = “ ” (snow)
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(b) using Blog documents searched by a fine keyword kw = “ ” (heavy snow)
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(c) using Twitter (Microblog) documents searched by a coarse keyword kw = “ ” (snow)
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(d) using Twitter (Microblog) documents searched by a fine keyword kw = “ ” (heavy snow)

Fig. 5 Granularity analyses of coefficient correlation between Web Sensor’s spatiotemporal data and JMA’s snowfall amount
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(a) using Blog documents searched by a coarse keyword kw = “ ” (earthquake)
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(b) using Blog documents searched by a fine keyword kw = “ ” (huge earthquake)
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(c) using Twitter (Microblog) documents searched by a coarse keyword kw = “ ” (earthquake)
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(d) using Twitter (Microblog) documents searched by a fine keyword kw = “ ” (huge earthquake)

Fig. 6 Granularity analyses of coefficient correlation between Web Sensor’s spatiotemporal data and JMA’s number of felt earthquakes
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Fig. 7 compares the simplest and spatiotemporally-

normalized Web Sensors with weblogs for four physical-world

phenomena by Time and Representation granularity analyses.
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Fig. 7 Comparison of simple and normalized Web Sensors

It shows that the spatiotemporally-normalized Web Sensor is

slightly superior to the simplest Web Sensor, and that both

Web Sensors give better performance for a longer (coarser)

time period and/or with a finer keyword. And it also shows

that spatio-temporal Web Sensors indicate periodically for

number of felt earthquakes, but increase gradually for the other

physical-world phenomena.

Fig. 8 and 9 show the spatial distribution (on 47 prefectures

in Japan) of coefficient correlation between Web Sensor’s

spatiotemporal data and JMA’s daily statistics for rainfall

amount and number of felt earthquakes, respectively. They

show that the spatial distribution for rainfall amount is more

uniform than for number of felt earthquakes, and that the

farther the space (prefecture) is from the Great East Japan

Earthquake on March 11th, 2011 (or the less felt earthquakes

the space has), the lower the coefficient correlation between

Web Sensor’s spatiotemporal data and JMA’s daily earthquake

stats for the space is.
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Fig. 8 Spatial distribution of coefficient correlation between Web Sensor’s
spatiotemporal data and JMA’s daily rainfall statistics
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Fig. 9 Spatial distribution of coefficient correlation between Web Sensor’s
spatiotemporal data and JMA’s daily earthquake statistics
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IV. CONCLUSION

This paper has introduced the simplest Web Sensor and

spatiotemporally-normalized Web Sensor to extract spatiotem-

poral data about a target phenomenon in the physical world

from Weblog documents searched by keyword(s) represent-

ing the target phenomenon. And also this paper has tried

to validate the potential and reliability of the Web-sensed

spatiotemporal data by carrying out 4 kinds of granularity

analyses of coefficient correlation with temperature, rainfall,

snowfall, and earthquake statistics per day by region of Japan

Meteorological Agency (JMA) as physical-world data:

• Spatial granularity analysis (region’s population density),

• Temporal granularity analysis (time period, e.g., per day

vs. per week vs. per month),

• Representation granularity analysis (e.g., a coarse key-

word “rain” vs. a fine keyword “heavy rain”), and

• Media granularity analysis (weblogs vs. microblogs such

as Tweets).

The four kinds of granularity analyses conclude that

• The smaller the space is, the larger the deviation of

coefficient correlation in the space is,

• The larger the time period is, the larger the average,

maximum, and deviation of coefficient correlation in the

time period are,

• The finer the keyword representing a target phenomenon

is, the larger the average and maximum of coefficient

correlation by Web Sensors with the keyword are, and

• Weblog documents tend to be superior to microblog

documents for Web Sensors to extract spatiotemporal data

about physical-world phenomena from the Web.
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