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Abstract—We experience various phenomena (e.g., rain,
snow, and earthquake) in the physical world, while we carry
out various actions (e.g., posting, querying, and e-shopping)
in the Web world. Many researches have tried to mine
the Web for knowledge about various phenomena in the
physical world, and also several Web services using Web-
mined knowledge have been made available for the public.
Meanwhile, the previous papers have introduced various
kinds of “Web Sensors” with Temporal Shift, Temporal
Propagation, and Geospatial Propagation to sense the Web
for knowledge about a targeted physical phenomenon, i.e.,
to extract its spatiotemporal data sensitively by analyzing
big data on the Web (e.g., Web documents, Web query logs,
and e-shopping logs), and compared them based on their
correlation coefficients with Japan Meteorological Agency’s
physically-sensed spatiotemporal statistics to ensure the ac-
curacy of Web-sensed spatiotemporal data sufficiently. As an
industrial application of Web Sensors to a problem of the
loss or error of physically-sensed spatiotemporal data due
to some sort of troubles (e.g., temporary faults of JMA’s
observatories), this paper tries to enable Web Sensors to
interpolate lost spatiotemporal data of physical statistics by
regression analysis.
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I. INTRODUCTION

We experience or forecast various phenomena (e.g.,

rainfall, snowfall, earthquake, influenza, and traffic acci-

dent) in the physical world, while we carry out various

actions (e.g., posting, querying, and e-shopping) in the

Web world. Recently, there have been many researches

to mine a huge amount of various documents in the

exploding Web world, especially User Generated Content

such as blogs, microblogs (e.g., Twitter), Word-of-Mouth

sites, and Social Networking Services (e.g., Facebook),

for knowledge about various phenomena and events in

the physical world. For instance, opinion and reputation

extraction [1], [2] of various products and services in

the physical world, experience mining [3], [4] of various

phenomena and events in the physical world, concept hier-

archy (semantics) extraction [5], [6], [7], [8], [9], [10] such

as is-a/has-a relationships, and visual appearance (look and

feel) extraction [10], [11], [12], [13], [14], [15] of physical

objects in the physical world. Meanwhile, Web services

using Web-mined knowledge have been made available for

the public, and more and more ordinary people actually

utilize them as important information for choosing better

products, services, and actions in the physical world.

However, there are not enough investigations [16],

[17], [18] on how accurately Web-mined data about a

targeted phenomenon or event in the physical world re-

flect physical-world data. It is not so difficult to mine

the Web for some kind of potential knowledge data by

using various text mining techniques, and it might not be

problematic only to enjoy browsing the Web-mined knowl-

edge data. But while choosing better products, services,

and actions in the physical world, it must be socially-

problematic to idolatrously/immoderately utilize the Web-

mined data in public Web services without ensuring their

accuracy sufficiently.

The previous papers [19], [20], [21], [22], [23], [24],

[25], [26], [27] have introduced various kinds of “Web

Sensors” to sense the Web for knowledge about a targeted

phenomenon (e.g., rainfall, snowfall, and earthquake) in

the physical world, i.e., to extract its spatiotemporal nu-

merical values by analyzing big data on the Web, i.e.,

various action-based data (e.g., Web documents, Web

query logs, and e-shopping logs) in the Web world, and

investigated how correlated Web-sensed spatiotemporal

data are with physically-sensed spatiotemporal data (e.g.,

Japan Meteorological Agency’s rainfall, snowfall, and

earthquake statistics [28]) as shown in Figure 1.
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Figure 1. Can Web Sensors sense the physical world sensitively?

Document-based Web Sensors with “Temporal Shift”

[20], [25] showed that

1) The optimized temporal shift parameter δ of Web

Sensors depends on physical phenomena: Not-

Shifted Web Sensor whose temporal shift parameter

δ is ±0 gives the highest correlation coefficient

(i.e., the Web runs parallel to the physical world)
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for rainfall, Shifted-to-Future Web Sensor whose

temporal shift parameter δ is negative gives the

highest correlation coefficient (i.e., the Web leads

the physical world) for snowfall, and Shifted-to-Past

Web Sensor whose temporal shift parameter δ is

positive gives the highest correlation coefficient (i.e.,

the Web follows the physical world) for earthquake,

2) The optimized temporal shift parameter δ and cor-

relation coefficient for rainfall are not much depen-

dent on geographical spaces (e.g., 47 prefectures in

Japan) and time periods, while the optimized tem-

poral shift parameter δ for snowfall and earthquake

varies more widely, and

3) More shaken geographical spaces and time peri-

ods are given higher correlation coefficient between

Web-sensed spatiotemporal data and physically-

sensed spatiotemporal data by the Great East Japan

Earthquake (3.11).

Query-based Web Sensors using Web search query

logs [24] are superior to Document-based Web Sensors

using Web documents such as blogs for snowfall and

earthquake, while Query-based Web Sensors are inferior

to Document-based Web Sensors for rainfall. In addition,

the best combined Web Sensor using both Web search

query logs and Web documents is superior to uncombined

Web Sensors using only Web search query logs or Web

documents.

This paper introduces a novel method to interpolate

the loss of physically-sensed spatiotemporal data about a

targeted physical phenomenon (e.g., Japan Meteorological

Agency’s rainfall, snowfall, and earthquake statistics) by

regression analysis between physically-sensed spatiotem-

poral data and Web-sensed spatiotemporal data about the

targeted physical phenomenon, as an industrial applica-

tion of variously defined “Web Sensors” with Temporal

Shift, Temporal Propagation, and Geospatial Propagation

to sense the Web for knowledge about a targeted phys-

ical phenomenon, i.e., to extract its spatiotemporal data

sensitively by analyzing big data on the Web (e.g., Web

documents, Web queries, and e-shopping logs).

The rest of this paper is organized as follows. Section

II shows various definitions of Web Sensors, and Section

III introduces a novel method of interpolating lost spa-

tiotemporal data of physical statistics by Web Sensors and

regression analysis. And Section IV concludes this paper.

II. WEB SENSORS

This section shows various definitions of Web Sensors

with Temporal Shift, Temporal Propagation, and Geospa-

tial Propagation to sense the Web for spatiotemporal

numerical values dependent on a geographic space (e.g.,

one of 47 prefectures in Japan) and a time period (e.g.,

days and weeks in 2011) about a physical phenomenon

(e.g., rainfall, snowfall, and earthquake).

First, the simplest and spatiotemporally-normalized

Web Sensor [19], [23] by using only Web documents (not

Web search query logs [24]) with a linguistic name of a

geographic space s, e.g., one of 47 prefectures in Japan

such as “Hokkaido,” a time period t, e.g., one of 365 days

or 52 weeks in 2011 such as January 1st (1st day) or

from January 1st to 7th (1st week) and from December

24th to 30th (52nd week), and a linguistic keyword kw
representing a targeted physical phenomenon, e.g., “rain,”

“snow,” and “earthquake,” is defined as

ws(kw, s, t) :=
dft(["kw" AND "s"])

dft(["s"])
, (1)

where dft(["s"]) stands for the Frequency of Web Doc-

uments searched from the Web, especially the Weblog, by

submitting the search query q with the custom time range t
to Google Web Search. Note that the Weblog is superior to

the whole Web, Twitter, Facebook, and News as a corpus

of Web Sensors [22].

Secondly, the temporally-shifted Web Sensor [20], [25]

with a “Temporal Shift” parameter δ [day], a geographic

space s, a time period t, and a linguistic keyword kw
representing a targeted physical phenomenon is defined as

ws-tsδ(kw, s, t) := ws(kw, s, t+ δ). (2)

As shown in Figure 2, Shifted-to-Past Web Sensor for

a targeted physical phenomenon (e.g., earthquake) when

its Temporal Shift parameter δ is positive (e.g., +14)

calculates a numerical value dependent on a geographic

space s (e.g., “Hokkaido” prefecture in Japan) and a

time period t (e.g., one of 52 weeks in 2011) by using

Web documents uploaded δ day(s) after the time period t
(i.e., infers the past from the future), while Shifted-to-

Future Web Sensor when its Temporal Shift parameter

δ is negative (e.g., −14) calculates a numerical value

dependent on a geographic space s and a time period t
by using Web documents uploaded |δ| day(s) before the

time period t (i.e., infers the future from the past).
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Figure 2. Temporally-shifted Web Sensors for earthquake and JMA’s
weekly earthquake statistics in Hokkaido prefecture, 2011.

Thirdly, the temporally-propagated Web Sensor [20]

with a “Temporal Propagation” parameter σ2
t , a geographic

space s, a time period t, and a linguistic keyword kw rep-

resenting a physical phenomenon is defined by integrating
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the surrounding time periods as

ws-tpσ
2
t (kw, s, t) :=

∑

∀δ
ws-tsδ(kw, s, t) · pσ2

t (δ) (3)

pσ
2
t (δ) :=

1√
2πσ2

t

· exp
(− δ2

2σ2
t

)
(4)

where pσ
2
t (δ) stands for a Normal Distribution N(0, σ2

t , δ)
with a mean 0 and a variance σ2

t . In this paper, ∀δ is

restricted to [−30, 30].

Next, the geospatially-propagated Web Sensor [26], [27]

with a “Spatial Propagation” parameter σ2
s , a geographic

space s, a time period t, and a linguistic keyword kw
representing a targeted physical phenomenon is defined

by integrating the surrounding geographic spaces as

ws-spσ
2
s (kw, s, t) :=

∑

∀si
ws(kw, si, t)·pσ2

s (distance(s, si))

(5)

pσ
2
s (d) :=

1√
2πσ2

s

· exp
(− d2

2σ2
s

)
(6)

where distance(s, si) stands for the geographic distance

[km] between geographic spaces s and si and is calculated

based on their latitude and longitude. In this paper, ∀si is

restricted to 47 prefectures in Japan, and the latitude and

longitude of its prefectural capital are used for calculating

distance(s, si) by using the Survey Calculation API of

Geospatial Information Authority of Japan (GSI) [29]. In

pairs of 47 prefectures in Japan, the pair of Hokkaido

pref. (Sapporo city) and Okinawa pref. (Naha city) has the

longest distance, 2243.9 [km], while the pair of Shiga pref.

(Otsu city) and Kyoto pref. (Kyoto city) has the shortest

distance, 10.5 [km].

III. DATA INTERPOLATION

As an industrial application of variously above-defined

“Web Sensors” with Temporal Shift, Temporal Propaga-

tion, and Geospatial Propagation to the loss or error of

physically-sensed spatiotemporal data due to some sort of

troubles (e.g., temporary faults of Japan Meteorological

Agency’s observatories), this section proposes a novel

method to interpolate lost spatiotemporal data about a

targeted physical phenomenon (e.g., Japan Meteorological

Agency’s rainfall, snowfall, and earthquake statistics).

For a lost spatiotemporal numerical value ps(s, t, kw)
about a targeted physical phenomenon (which is repre-

sented by a linguistic keyword kw, e.g., “rain,” “snow,”

and “earthquake”) in a geographic space s, e.g., one of

47 prefectures in Japan such as “Hokkaido” over a time

period t, e.g., one of 365 days or 52 weeks in 2011 such as

January 1st (1st day) or from January 1st to 7th (1st week)

and from December 24th to 30th (52nd week), the pro-

posed method interpolates it by regression analysis with

its surrounding N physically-sensed spatiotemporal data,

their corresponding N Web-sensed spatiotemporal data,

and its corresponding Web-sensed spatiotemporal data

ws(s, t, kw) or ws-XX(s, t, kw) (where XX ∈ {“ts,” “tp,”

“sp”}). In this paper, N is restricted to [1,30]. The variety

of N physically-sensed spatiotemporal data surrounding

a lost physically-sensed spatiotemporal numerical value

ps(s, t, kw) has:

1) N physically-sensed spatiotemporal data followed

by it (i.e., only N past data),

ps(s, t−N, kw), · · · , ps(s, t− 1, kw),

2) N physically-sensed spatiotemporal data following

it (i.e., only N future data),

ps(s, t+ 1, kw), · · · , ps(s, t+N, kw),

3) �N/2� physically-sensed spatiotemporal data fol-

lowed by it and �N/2� physically-sensed spatiotem-

poral data following it (i.e., both �N/2� past data

and �N/2� future data, future-preferred when N is

odd-numbered),

4) �N/2� physically-sensed spatiotemporal data fol-

lowed by it and �N/2� physically-sensed spatiotem-

poral data following it (i.e., both �N/2� past data

and �N/2� future data, past-preferred when N is

odd-numbered).

The generalization of the above-mentioned examples is m
(∈ [0, N ]) physically-sensed spatiotemporal data followed

by it and N − m physically-sensed spatiotemporal data

following it (i.e., m past data and N −m future data) as

shown in Figure 3.

Physically-sensed Data Physically-sensed Data

Web-sensed DataWeb-sensed Data

Lost
Interpolated

Regression

Analysis

Figure 3. Interpolating a lost physically-sensed datum by Web Sensors
and regression analysis using not only physically-sensed data but also
Web-sensed data (when N = 3 and m = 1).

Physically-sensed Data Physically-sensed Data

Lost

Interpolated(e.g., Average)

Figure 4. Interpolating a lost physically-sensed datum by average
function using only physically-sensed data (adopted as a baseline in the
experiment).
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IV. CONCLUSION

This paper has introduced a novel method to interpolate

the loss of physically-sensed spatiotemporal data about a

targeted physical phenomenon (e.g., Japan Meteorological

Agency’s rainfall, snowfall, and earthquake statistics) by

regression analysis between physically-sensed spatiotem-

poral data and Web-sensed spatiotemporal data about the

targeted physical phenomenon, as an industrial applica-

tion of variously defined “Web Sensors” with Temporal

Shift, Temporal Propagation, and Geospatial Propagation

to sense the Web for knowledge about a targeted phys-

ical phenomenon, i.e., to extract its spatiotemporal data

sensitively by analyzing big data on the Web (e.g., Web

documents, Web queries, and e-shopping logs).

The future work has to perform experiments to validate

the introduced method of interpolating lost spatiotemporal

data of physical statistics by Web Sensors and regression

analysis, and also will try to apply the other kinds of

physical phenomena to the proposed interpolation. In

addition, Web Sensors will be able to forecast future data

about a targeted physical phenomenon and to alert falsified

data of real statistics.
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