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Abstract—In recent years, a lot of researches on AI (Artificial
Intelligence) for Image Synthesis and Image Generation have
been being conducted actively, and state of the art GANs
(Generative Adversarial Networks) for text-to-image have been
able to generate precise images with high photorealism for a
text-based user query (but also no-good images). However, it
is pointed out that the precision of all images generated for a
query has been not always enough high. Therefore, for practical
usages, they are required to be re-ranked and/or filtered based on
some sort of metric(s). This paper proposes a novel metric, R2-B2
(RR-BB), on photorealism, especially “size balance” (i.e., balance
between in-image objects’ size), of a manually or automatically
synthesized image by Regression analysis based on multiple
Recognized objects’ Bounding Box, i.e., the position (x, y) and
size (width, height, or area) of objects recognized in the image.

Index Terms—image evaluation, no-reference image quality
assessment, image quality metrics, object recognition, object
detection, regression analysis, correlation analysis

I. INTRODUCTION

In recent years, a lot of researches on AI (Artificial Intelli-
gence) for Image Synthesis and Image Generation have been
being conducted actively, and state of the art GANs (Genera-
tive Adversarial Networks) [1], [2] for text-to-image have been
able to generate precise images with high photorealism for a
text-based user query (but also no-good images). However,
it is pointed out that the precision of all images generated
for a query has been not always enough high.Therefore,
for practical usages, they have been yet required to be re-
ranked and/or filtered based on some sort of metric(s) [3]–
[6]. This paper proposes a novel R2-B2 (RR-BB) metric on
photorealism, especially “size balance” (i.e., balance between
in-image objects’ size) or “size sense” [7], of a manually
or automatically synthesized image by Regression analysis
based on multiple Recognized objects’ Bounding Box, i.e.,

the position (x, y) and size (width, height, or area) of objects
recognized in the image.

Figure 1 shows no-good images without photorealism, es-
pecially size balance, generated and selected by the Parti
(Pathways Autoregressive Text-to-Image) model [2], that is
reported to be the SOTA (State-Of-The-Art) text-to-image with
MS-COCO-FID-30K = 7.23 on July 22nd, 2022 [8]. And also
Figure 1 shows their CLIP [4] score for their text-based query,
that is a similarity between an image and a text-based query,
and the proposed R2-B2 score for no extra input(s) such as a
text-based query and a reference image [11], [12]. They have
high similarity (i.e., CLIP score) for their text-based query,
but seem to be low balance between in-image objects’ size in
the real world. Therefore, their R2-B2 score is required to be
calculated to be low by the proposed method, while the R2-B2
score for generated images (a,b,c) with some failures for their
query but with high size balance and a real photo image (d)
in Figure 2 is required to be calculated to be high.

II. RELATED WORK

The proposed method to calculate the novel R2-B2 metric
on “size balance” (i.e., balance between in-image object’s size)
of an input image is mainly related to the research fields
of IQA (Image Quality Assessment) [9]–[18], IQMs (Image
Quality Metrics) [20]–[22], Image Evaluation [3]–[6] for a
text-based query, and Image Retrieval [23], [24]. These are
very similar to each other, because IQA, IE, and IR other
than IQMs also use some sort of metric(s) for an input image.

The research field of IQA, especially not subjective but
objective IQA, has a lot of existing researches, and is di-
vided into three kinds of IQA: FRIQA (Full-Reference IQA)
[11], [12], RRIQA (Reduced-Reference IQA) [13]–[15], and
NRIQA (Non-Reference IQA) [16], [17]. NRIQA is to assess



query = “Two baseballs to the left of three tennis balls.”
CLIP score = 32.0625 (high for the query)
R2-B2 score = ? (to be low because a baseball is nearer than two tennis balls

but a baseball is smaller than two tennis balls.)
in-image objects’ size in real world:

baseball = 73 to 76 [mm] in diameter
tennis ball = 65.41 to 68.58 [mm] in diameter

query = “A squirrel gives an apple to a bird.”
CLIP score = 34.4375 (high for the query, while low for the other 3 queries.)
R2-B2 score = ? (to be low because a squirrel and a bird seem to be big for an apple.)
in-image objects’ size in real world:

squirrel = 10 to 127 [cm] in total length
apple = 5.5 to 8.5 [cm] in diameter
bird = 5.5 to 280 [cm] in total length

query = “A rhino beetle this size of a tank grapples a real life passenger airplane on the tarmac.”
CLIP score = 34.8125 (high for the query, while low for the other 3 queries.)
R2-B2 score = ? (to be low because two rhino beetles are too big for an airplane.)
in-image objects’ size in real world:

rhino(ceros) beetle = 40 to 80 [mm] in total length
airplane (jet) = 33.6 to 73.9 [m] in total length

query = “A group of elephants walking in muddy water.”
CLIP score = 34.0625 (high for the query, while low for the other 3 queries.)
R2-B2 score = ? (to be low? because an elephant (not child) centered in the image is nearer

than two elephants following it, but it seems to be smaller than them.)
in-image objects’ size in real world:

elephant (adult) = 247 to 336 [cm] in height
elephant (baby) = about 100 [cm] in height

Fig. 1. Examples of no-good images generated by the SOTA text-to-image, Parti [2], and their CLIP [4] score and the proposed R2-B2 score,
where information about in-image objects’ size in the real world is used Wikipedia as a reference.

(a) (b) (c) (d)
Fig. 2. Examples of generated images (a,b,c) with higher balance between in-image objects’ size than the images in Figure 1 and real photo images (d).

the quality 1 of an input image for no extra input(s) such as a
reference image and a text-based query, like the proposed R2-
B2. But IQA including NRIQA is to assess not “sense balance”
but 25 types of distortions such as blur, color diffusion and
saturation, JPEG compression, and various noises [10], unlike
the proposed R2-B2.

Image Evaluation [3]–[6] and Image Retrieval [23], [24]
are to calculate some sort of metric(s) such as the fitness
and a similarity of an input image for a text-based query

1Image Quality is defined as “the level of accuracy with which different
imaging systems capture, process, store, compress, transmit and display the
signals that form an image” in Wikipedia [19] from a perspective of signal
processing systems or “the weighted combination of all of the visually
significant attributes of an image” [21] from a perspective of human viewers.

and/or a reference image, and to offer a user images ranked
or filtered based on the metric(s). Fundamentally, they require
extra input(s), unlike the proposed R2-B2 and NRIQA.

Figure 3 gives an overview of the proposed R2-B2 metric
and its related research fields with focusing on Input/Output.
Aiba, et al. [26] proposes a support system for Image Synthesis
by estimating the spatial structure of a background image
using regression analysis based on recognized objects’ position
and size in a background image and automatically adjust-
ing the size of a pasted object image to synthesize images
with “size balance,” while Nishihara, et al. [7] proposes a
3DCG CAPTCHA system using arbitrarily-distorted images
without “size sense” between in-image objects. Layout-to-
Image GANs [27]–[29] generate images adapted to not only
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Fig. 3. An overview of the proposed R2-B2 metric and its related research fields with focusing on Input/Output.

a text-based query but also the layout of in-image objects
such as their BBs (Bounding Boxes), but do not evaluate “size
balance” (i.e., balance between in-image objects’ size), unlike
the proposed R2-B2 metric.

III. PROPOSED METHOD

This paper proposes a novel R2-B2 metric on photorealism,
especially “size balance” (i.e., balance between in-image ob-
jects’ size), of a manually or automatically synthesized image
by Regression analysis based on multiple Recognized objects’
Bounding Box, i.e., the position (x, y) and size (width, height,
and/or area) of objects recognized in the image.

This section first gives an overview of the idealized system
and the realized system for the proposed R2-B2 metric, and
also described the limitations of the current R2-B2 metric (e.g.,
the requirements of input images). Second, the algorithm to
calculate the proposed R2-B2 metric for an input image with
fulfilling the requirements is defined in detail. Finally, several
existing metrics to validate the proposed R2-B2 metric by
comparing with them in the experiments are introduced.

A. Overview and Limitations

Figure 4 gives an overview of the idealized system(s) and
the realized system for the proposed R2-B2 metric.

The current R2-B2 metric has several limitations and input
images to be evaluated might have some requirements:

• The proposed algorithm can reflect not any in-
stance/subclass and its doing/transforming by a spe-
cific/generic object recognition with high precision and
recall, but only the classes that can be recognized by

a generic object recognition API used in the proposed
algorithm’s Step 1. This paper uses TensorFlow 2 Object
Detection API [30] with the pre-trained model, CenterNet
HourGlass104 1024x1024, that can recognize 80 classes
with MS-COCO mean Average Precision = 44.5 [31].

• The proposed algorithm can utilize the real-world size
of a recognized object in an input image to convert the
object to the Unit Object in the proposed algorithm’s
Step 2, not enough fine-grained, i.e., instance-level and
specialized for a user (human viewer) (e.g., S. Hattori),
a space (e.g., in Japan), and a time (e.g., in 2022) by
using the spatiotemporally-localized Object DBs, but only
coarse-grained, i.e., class-level and ad-hoc generalized by
using the generalized Object DB shown in Table I.

• Input images to be evaluated might have some require-
ments: with vanishing point(s) (while with/out vanishing
lines), and without rotated, especially by a rotation angle
other than 90◦, 180◦, and 270◦ (while with/out reversed).

B. Definition of R2-B2 Metric

The proposed R2-B2 algorithm to evaluate the “size bal-
ance” (i.e., balance between in-image objects’ size) of an input
image without extra input(s) such as a text-based query and a
reference image is defined as follows.

input: an image img (that meets requirements)
and ideally, a user (human viewer) u (that is optional)

output: the R2-B2 score, img.R2-B2(u) ∈ [−1, 1], of the input
image img (ideally, personalized or not for the input
user u, but in this paper, only not personalized)



Y. Yoshida

chair

?

class-level

instance-level

class-level

Personalized Object Recognition

Personalized Object Database

Y. Yoshida

43W [cm]

171H [cm]

male

person

�

male

JOIFA620

corridor

instance-level

class-level

class-level

Personalized Object Recognition

Personalized Object Database

JOIFA620

?W [cm]

?H [cm]

chair

corridor

chair

AI

male

chair

corridor

class-level

class-level

class-level

Socialized Object Recognition

Socialized Object Database

male

person

chair

corridor

�

male

person

AI

Y. Yoshida

JOIFA620

corridor on 2F, Bldg. 9 (V), M-IT

instance-level

instance-level

instance-level

Fine-grained Object Recognition

Fine-grained Object Database

corridor

Y. Yoshida

43W [cm]

171H [cm]

male

person

JOIFA620

54.5W

75.5H

chair

dependent on Space � Time

e.g., in Japan � in 2022

standing and 

tuning his back

Japanese S. Hattori K. Aiba

Input: an Image

e.g., only a person is

zoomed 120 [%]

AI

person

chair

class-level

class-level

Step 1. Realized Generic Object Recognition

e.g., TensorFlow 2 Object Detection API

Realized Generic Object Database

e.g., Table I

Person

41.61W

163.75H

Chair

56.12W

84.88H

Input: an Image

e.g., only a person is

zoomed 120 [%]

?

class-level

�
�

�.
h

e
ig

h
t �
�
�

   

���. ����

�
�

�.
u

n
it

_h
e

ig
h

t �
�
�

   

���. ����

Step 2. Realized Conversion of �-Restricted Recognized Objects’ Bounding Box to Unit Objects

by using Recognized Objects’  Real-world Size in Realized Generic Object Database

Step 3. PPMCC by Regression Analysis

Output: the proposed R2-B2 score for the input image  

Fig. 4. Ideal object recognition that is instance-level, spatio-temporal, and personalize, and the realized R2-B2 algorithm using 80-class-level object recognition.



Step 1. (Object-oriendted) Object Recognition
To calculate the R2-B2 score by Regression analysis based

on multiple unit objects’ Bounding Box converted from Rec-
ognized objects’ Bounding Box) in the Step 3, this Step 1
has to recognize in-image objects’ name of class/instance
and bounding box in the input image img, as precisely and
exhaustively as possible, by not specific but genetic object
recognition. This paper uses TensorFlow 2 Object Detec-
tion API [30] with the pre-trained model, CenterNet Hour-
Glass104 1024x1024, that can recognize 80 classes (labels)
with MS-COCO mAP (mean Average Precision) = 44.5 [31].

Step 1.5. In-image Space and Time Estimation
Ideally, the Step 1.5 estimates the space s (e.g., in Japan)

and the time t (e.g., in 2022) in the input image, to specialize
and more accurately estimate recognized objects’ real-world
size by using not the generalized but the spatiotemporally-
localized Object DB for the space s and the time t in the next
Step 2. However, this Step 1.5 is skipped in this paper, and
would be tackled in the future work.

Step 2. Conversion of Recognized Objects to Unit Objects
To apply regression analysis unifiedly to heterogeneous

classes (ultimately, instances) of recognized objects’ bounding
box, i.e., the position and size in the input image in the next
Step 3, this Step 2 converts the in-image size, obj.sizeimg ,
of a recognized object obj in the input image img to the in-
image size, obj.unit sizeimg , of the Unit Object (in this paper,
cubes 1 [cm] on a side) by using the average size(s) µ of its
class-name in the Object DB (as shown in Table I):

∀obj, obj.unit sizeimg :=
obj.sizeimg

obj.sizerw(u, s, t)
(1)

where obj.sizeimg stands for the field (constant value) of
an object obj to return the in-image size (at the position
(x, y)) of a recognized object obj in an input image img,
and obj.sizerw(u, s, t) stands for the method (function) of an
object obj to return the real-world size of a recognized object
obj in an input image, ideally, specialized for a user (human
viewer) u (e.g., S. Hattori) in a space s (e.g., in Japan) and
time t (e.g., in 2022) by using the spatiotemporally-localized
Object DB, but in this paper, generalized (not specialized for
any user in any space and any time) by using the generalized
Object DB. In this paper, the Object DB is generalized
by averaging the average size(s) µ in the spatiotemporally-
localized Object DB(s). For instance, the generalized (not
specialized) average width, obj.sizerw() = 41.605 [cm], for
any recognized object obj of the class “person” is averaged
by 43.95 [cm] for Young/Male Japanese and 39.26 [cm] for
Young/Female Japanese shown in Table I.

Step 3. Regression (Correlation) Analysis
To evaluate the “size balance” of an input image without

extra input(s) such as a text-based query and a reference
image, this Step 3 conducts regression (correlation) analysis
between the position and the in-image size of the Unit Objects,

converted from all recognized objects ∀obj in an input image.
Here, “all” recognized objects are restricted with their recog-
nition probability (e.g., “detection scores” by TensorFlow 2
Object Detection API [30]) > a threshold θ.

In this paper, the PPMCC (Pearson’s Product-Moment Cor-
relation Coefficient) between the position and the in-image
size of the Unit Objects, converted from all recognized objects
∀obj in an input image is output without any change, as the
proposed R2-B2 score img.R2-B2(u) ∈ [−1, 1] to evaluate
the “size balance” of an input image img, ideally, specialized
for a user (human viewer) u (e.g., S. Hattori), but in this paper,
generalized (not personalized for any user). Note that if the
number of the objects recognized in an input image and filtered
with a threshold θ is less than 2, the proposed R2-B2 metric
returns “undefined” by the PPMCC. Therefore, a threshold θ
cannot be set too high.

In the future work, the proposed R2-B2 metric might be
adapted with some changes for a practical usage, e.g., range
conversion to [0, 1] where 0 means “perfectly size-unbalanced”
while 1 means “perfectly size-balanced.”

C. Definition of Baseline Metrics

As a baseline for the experiments to validate the proposed
R2-B2 metric, this subsection first introduces conventional
FRIQA metrics for image similarity between an input image
and its most photoreal image 2: MSE (Mean Squared Error),
RMSE (Root MSE), PSNR (Peak Signal-to-Noise Ratio) [dB],
and MSSIM (Mean Structural SIMilarity Index) [32].

First, the metric MSE(I,K) ∈ [0,MAX2
I ]

3 is defined as
follows, that takes two arguments: an input image I and its
most photoreal image K with their common width w and
height h. Here, MAXI is the maximum possible pixel intensity
of the input image I .

MSE(I,K) :=
1

w · h

w−1∑
i=0

h−1∑
i=0

[I(i, j)−K(i, j)]
2 (2)

where I(i, j) and K(i, j) denote their pixel intensities at the
in-image position (i, j).

Second, the metric PSNR(I,K) ∈ [0,∞] 4 is defined as
follows, that takes 2 arguments: an input image I and its most
photoreal image K with their common width w and height h.

PSNR(I,K) := 10 · log10
(

MAX2
I

MSE(I,K)

)
(3)

The metric MSSIM(I,K) ∈ [0, 1] 5 computes the Mean
SSIM (Structural SIMilarity) index between two images [33]:
an input image I and its most photoreal image K. SSIM(x, y)
uses raw pixel intensities locally with two sliding windows x
and y of common size N × N , while MSE and PSNR uses
raw pixel intensities globally and have limitation(s).

2In practice, the most photoreal (ground truth) image for an input image is
not always given. In this paper, it is manually given only for the experiments.

30 indicates the perfect similarity. The greater MSE, the lesser similarity.
4∞ (or undefined) indicates the perfect similarity. The lesser PSNR, the

lesser similarity.
51 indicates the perfect similarity, while 0 indicates no similarity.



TABLE I
6 (WITH THRESHOLD θ = 0.15 IN THE IMAGES FOR EXPERIMENTS) OF 80 RECOGNIZABLE CLASSES BY TENSORFLOW 2 OBJECT DETECTION API [30]

AND THE STATISTICS ON THEIR SIZE IN THE OBJECT DB.

id class-name user space time width µ± σ [cm] #samples samples fromheight µ± σ [cm]

1 person — in Japan in 2003

width: 43.95± 2.66 49 Young/Male in AIST/HQL 3D Anthropometric DB ’03 [37]height: 169.67± 6.54
width: 39.26± 1.60 47 Young/Female in AIST/HQL 3D Anthropometric DB ’03 [37]height: 157.83± 4.35 48

44 bottle —
in Japan

in 2022

width: 7.14± 2.04 76 noise-filtered from the top 100 products by Amazon.co.jp [38]height: 21.89± 6.20

in World width: 7.92± 2.62 19 19 subclasses of bottle searched by Dimensions.com [39]
height: 24.44± 6.24 e.g., Soda Bottle - 2 Liter (11.0Diameter × 31.5H [cm])

62 chair —
in Japan

in 2022

width: 52.58± 12.63 80 noise-filtered from the top 100 products by Amazon.co.jp [38]height: 84.91± 28.74

in World width: 59.66± 17.61 29 29 subclasses of chair searched by Dimensions.com [39]
height: 84.84± 10.12 e.g., CH36 Chair (48.0D × 52.1W × 81.0H [cm])

67 dining table —
in Japan

in 2022

width: 113.70± 33.14 93 noise-filtered from the top 100 products by Amazon.co.jp [38]height: 72.79± 4.20

in World width: 166.73± 58.44 27 27 subclasses of dining table searched by Dimensions.com [39]
height: 73.20± 2.32 e.g., Marais Dining Table (129.5Length × 69.9W × 73.7H [cm])

72 tv —
in Japan

in 2022

width: 99.78± 32.38 80 noise-filtered from the top 100 products by Amazon.co.jp [38]height: 63.34± 19.15

in World width: 143.97± 25.67 6 6 subclasses of dining table searched by Dimensions.com [39]
height: 89.52± 15.55 e.g., Samsung 82” Q70 TV (38.6D × 183.4W × 114.6H [cm])

84 book —
in Japan

in 2022

width: 18.45± 4.04 50 noise-filtered from the top 100 products by Amazon.co.jp [38]height: 24.25± 5.25
in World — 0 no subclass of book searched by Dimensions.com [39]

All the above-mentioned baseline metrics are FRIQAs, thus
are not for the “size balance” (i.e., balance between in-image
objects’ size) but only for the “quality” of an input image, and
require not only the input image but also its reference image,
i.e., the most photoreal (ground truth) image. Therefore, to
validate the proposed R2-B2 metric without any reference
image, BRISQUE (Blind/Referenceless Image Spatial QUality
Evaluator) [34] is also introduced as a NRIQA, that operates
in the spatial domain based on a NSS (Natural Scene Statistic)
to quantify possible losses of “naturalness” in an input image.
This paper uses all the above-mentioned baseline metrics
implemented by OpenCV [35] for the experiments.

The alternative image similarity methods based on keypoint
detectors and local invariant descriptors are SIFT, SURF,
KAZE, AKAZE, ORB, BRISK, and so forth [36]. Further-
more, there are image similarity methods based on DL (Deep
Learning), especially Siamese Networks [18].　

IV. EXPERIMENTAL RESULTS

This section shows some experimental results to validate
the proposed R2-B2 metric by comparing with three FRIQA
metrics, MSE, PSNR, and MSSIM, and one NRIQA metric,
BRISQUE, implemented by OpenCV [35].

First, Table II compares their scores for input images: a
reference image which is “1 person (who is Y. Yoshida [40]
with about 43W × 171H [cm]) and 5 chairs (which is the same
type, JOIFA620-287F, with about 54.5W × 75.5H [cm]) in a
corridor (which is on the 2nd floor of Education and Research
Building 9 (V), Muroran Institute of Technology)” as the most
photoreal (ground truth) image for these input images, and its
distorted images by zooming only the person with 80 to 120
percent but not switching its pixel aspect ratio.

Second, Figure 5 compares the proposed R2-B2 scores (by
regression-analyzing obj.yimg → obj.unit heightimg , optimiz-
ing its threshold θ and/or assuming not 80-class-level but
instance-level object recognition) with the BRISQUE score as
a NR/Blind IQA per zoom [%], and shows that the proposed
R2-B2 metric (if by instance-level object recognition) has the
peak, 0.999, at zoom 100 [%] that is not distorted, which
is almost ideal, while the proposed R2-B2 metric (only by
optimizing its threshold θ) unfortunately has the peak, 0.993,
at zoom 88 [%] that is slightly distorted, and the existing
BRISQUE metric does not peak out, and also that both the
proposed R2-B2 metrics fall down steeply for zoom 116 to 120
[%] that is remarkably distorted enough to make the person’s
head peek out in the image.

Finally, Figure 6 shows the dependency of SRCC (Spear-
man’s Rank Correlation Coefficient) between the proposed R2-
B2 score (by 80-class-level TensorFlow 2 Object Detection
API [30]) and zoom [%] on its threshold θ, while Figure 7
shows the dependency of SRCC (Spearman’s Rank Correlation
Coefficient) between the proposed R2-B2 score (if by instance-
level object recognition) and zoom [%] on its threshold θ. Fig-
ure 6 shows that the proposed R2-B2 metric (implemented by
80-class-level object recognition) fortunately achieves almost
−1.0 on SRCC for zoom 100 to 120 [%], while unfortunately
not near 1.0 but rather negative on SRCC for zoom 80 to 100
[%], while Figure 7 shows that the proposed R2-B2 metric (if
by instance-level object recognition) can achieve almost 1.0
on SRCC for zoom 80 to 100 [%] and almost −1.0 on SRCC
for zoom 100 to 120 [%]. Note that the existing BRISQUE
metric achieves 0.996 (not negative) on SRCC for zoom 100
to 120 [%] and 1.0292 on MAE (Mean Absolute Error).



TABLE II
COMPARISON BETWEEN THE PROPOSED R2-B2 SCORE FOR “SIZE BALANCE” AND BASELINE METRICS FOR NR- OR FR-IQA.

Reference Image

Zoom [%] 80 85 90 95 100 105 110 115 120
MSE 893.2714 739.595 526.237 298.255 0.000 311.835 565.195 895.776 1244.088

FR- PSNR [dB] 18.621 19.441 20.919 23.385 ∞ 23.192 20.609 18.609 17.182
MSSIM 0.924 0.934 0.946 0.961 1.000 0.959 0.940 0.922 0.905

NR- BRISQUE 24.104 24.206 24.202 25.125 25.615 26.524 27.828 28.812 29.621
R2-B2 (optimized) 0.982 0.983 0.989 0.992 0.988 0.982 0.974 0.965 0.866
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Fig. 5. Comparison between the proposed R2-B2 scores (by optimizing θ
and/or assuming instance-level object recognition) and BRISQUE per zoom.

V. CONCLUSIONS AND FUTURE WORK

To evaluate and re-rank and/or filter synthesized images
based on not only a similarity between an image and its
text-based query such as CLIP [3] but also “size balance”
(i.e., balance between in-image objects’ size), this paper has
proposed a novel R2-B2 (RR-BB) metric on photorealism,
especially “size balance,” of a manually or automatically
synthesized image by Regression analysis based on multiple
Recognized objects’ Bounding Box, i.e., the position (x, y)
and size (width, height, and/or area) of objects recognized in
the image. The experimental results have shown the potentials
of the proposed R2-B2 metric for “size balance” of input
images, and also its limitations, especially, by not instance-
level but only 80-class-level object recognition.

In the future work, the proposed R2-B2 (Regression analysis
based on multiple Recognized objects’ Bounding Box in an
input image) metric has to be validated for as many input
images as possible by various correlation coefficients with
human viewers’ evaluation such as MOS/DMOS (Difference
Mean Opinion Score), would be personalized for a user

(human viewer) and/or spatiotemporally-localized for a space
and a time, and could be applied to

• object’s size error detection and correction, e.g., for incor-
rect perspective in a frame (i.e., “koma”) of a “manga,”

• vanishing point detection not based on vanishing lines,
• horizon detection and/or rotation angle estimation, only

for real photo images, and so forth.
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