
1

�� ��JAWS2012 JAWS2012 ��

Passive Code Review with Automatically-Generated

Model Diagram

Yoshizane Hirose College of Information and Systems, Muroran Institute of Technology
12061014@mmm.muroran-it.ac.jp

Shun Hattori College of Information and Systems, Muroran Institute of Technology
hattori@csse.muroran-it.ac.jp

keywords: Code review. Flowchart. Software engineering. Model diagram.

Summary

Today, it is getting more important to manage the quality of source code in more large-scale software devel-
opment. In such system development, code review is one of effective means to guarantee the minimum quality of
source code. However, the traditional techniques of code review are often criticized as inefficient or unproductive,
because they have the risk of endless review. Therefore, this paper proposes a novel support system for code review
to generate an effective procedure of “Passive Code Review” within a reviewer-given period of time. And also our
research implements a prototype tool to generate a flowchart of source code to help reviewers understand the source
code, and validates the effectiveness of its functions based on subjective evaluation by the reviewers.

1. Introduction

Because Information and Communication Technology

supports our life as one of social infrastructures, it is in-

dispensable for our society. Software technology plays

important role as the core of ICT. Software continues to

require not only higher reliability and integrity but also

larger scalability, more sophistication, and higher func-

tionality. Because of such an environment, we expect much

of Software Engineering. Software engineering was born

after invention of computers, so its history has yet been

not long. However, it has achieved great results such as

clarification significance of code review process in soft-

ware development and proposals of methods of the pro-

cess [Ferreire 10]. For example, how to organize review’s

points of view as to each process (e.g., design process or

coding process) and how to develop the worksheets for

review have been proposed and applied to practical situ-

ations. Even today, many other researches and develop-

ments continue to be carried out.

Code review is an immemorially-used method expected

to improve the quality of software and to detect its vul-

nerable points by inspecting it from various view points

by human hands [Laitenberger 02, Aksulu 10]. They rep-

resent that code review accomplishes few fruitage for in-

vested human resources, compromises the reliability and

productivity of software development, and also requires

additional processes such as hearing from software de-

velopers to accomplish more fruitages. Today, to make

more considerable achievements in code review, deriva-

tive model diagrams while development and static code

analysis tools are often utilized [Remillard 05]. But it is

difficult to substitute one of them for hearing from soft-

ware developers because of their potential problems.

From the above-mentioned findings, we focus on “Code

Review” that tends to be often made light of even though

it is very important for software development processes,

propose a novel tool for code review, and verify the basic

effectiveness of our developed tool.

2. Proposed Method

This section extracts and analyzes problems of “Active

Code Review” which seems to be the major method of

existing code reviews, and proposes the novel concept of

“Passive Code Review” to solve them.

2·1 Extracting Problems of Active Code Review

Many reviewers often browse their targeted source code

by a text editor or print out it for code review. This method

(called “Active Code Review” in this paper) is that review-

ers select the targeted area of source code by themselves

all at once at will, and read and try to understand it.

The Active Code Review method is dependent on each

reviewer’s previous knowledge and programming experi-

ence, and is expected to give her enough feedback after

2 Proceedings of JAWS2012

her seeing through the whole composition of her targeted

source code. Therefore, Active Code Review seems to be

aimed at intermediate level of software engineers, because

it needs reviewer’s high accomplishment and experience

as software engineers. But reviewers cannot always ob-

tain enough feedback by Active Code Review, even if they

have high accomplishment as software engineers. At ac-

tual development sites, development programmers often

set up a meeting to explain the logics of their source code

for the others. Active Code Review is nothing more than

local (not global) analysis of source code, and so it is not

always effective in association with higher functionality

and more multiple functions of software.

By analyzing the above-mentioned problems of the ex-

isting Active Code Review, in which reviewers read and

understand one line of their targeted source code at a time,

it is found to be difficult for them to see through and in-

terpret the whole of their targeted source code. Based on

these findings, this paper proposes a novel code review

method (called “Passive Code Review”) to enable review-

ers to see through the whole of their targeted source code

by passive browsing [Hourai 03].

2·2 Passive Code Review

The Passive Code Review method is that reviewers spec-

ify their code-review time, a support system automatically

generates an effective procedure for code review in their

specified time, and they could understand their targeted

source code by passively browsing the procedure.

A Passive Code Review system can monitor more pre-

cisely where a reviewer is browsing in her targeted source

code, and offer the reviewer supplementary information

for the source code more timely and appropriately. In ad-

dition, the system needs more effective and novel method

for code review, because a reviewer has to review her tar-

geted source code in a limited time. And moreover, as

an effective code review method for Passive Code Review,

this paper proposes a novel method to provide reviewers

with “a visualization to see through their targeted source

code” and “a visualization of logics of the source code

according to their browsing location” by using model di-

agrams. Methods to generate model diagrams from a re-

viewer’s targeted source code and enrich her understand-

ing of the source code were also used concurrently by

source code analysis tools in the existing Active Code Re-

view. However, the existing code analysis tools have not

yet been able to extract valuable information from log-

ics of the source code intricately-intertwined with its al-

gorithms and external systems etc., and are far cry from

achieving successful results. Meanwhile, in Passive Code

Review, a review of source code and its visualization by

model diagrams are processed concurrently as shown in

Figure 1. The code review complements information dis-

carded by the model diagrams, and the model diagrams

are adapted to a reviewer’s browsing location of the source

code. This method could give reviewers high feedback in

their specified limited time.

Model diagram（visualize）

Existing method (Active Code Review)

Proposed method （Passive Code Review）

Feedback to reviewers
Higher feedback to reviewers

Sourcecode
BrowsingSource Code

Sourcecode

update

Fig. 1 Passive Code Review

3. Automatic Flowchart Generation for Pas-
sive Code Review

This section studies differences between model diagrams

generated by the existing source code analysis tools and

drawn by software developers themselves, specifies for

our proposed Passive Code Review, and makes a selection

of additional functions to flowchart diagrams.

Our proposed model diagrams for Passive Code Review

are assumed to be combined with only code review of a

targeted source code. They can allow reviewers to avoid

such mistakes as false recognition of their abstract infor-

mation by using the source code together, and also can be

drawn in abstract notation. In addition, our system moni-

tors a reviewer’s browsing location in her source code, and

enables her to understand it by generated model diagrams

appropriate for the location. They include the following

factors useful for parallel browsing both a reviewer’s source

code and its automatically-generated model diagrams:

• Model diagram update adapted for a reviewer’s brows-

ing location in her targeted source code,

• Complementary notation of model diagrams based on

a reviewer’s source code,

• Divisional association of a reviewer’s source code with

its generated model diagrams,

• Manifestation of system behaviors such as changing-

over of a reviewer’s browsing location,

• Browsing location handle in model diagrams,

• Review-time admeasurement for Passive Code Review.

Passive Code Review with Automatically-Generated Model Diagram 3

3·1 Model Diagram Update for User’s Browsing Loca-

tion

This function helps a reviewer a lot to understand her

targeted source code by updating model diagram adapted

to her browsing location in the source code.

The Passive Code Review system enables a reviewer to

perceive simplified correspondence relationship between

her targeted source code and its generated flowchart di-

agram, by emphasizing where she should browse in the

flowchart diagram of the whole source code as shown in

Figure 2. The right is the current area of codes that a re-

viewer should browse in her targeted source code, while

the left is the current of symbols that she should browse

simultaneously in its generated flowchart diagram.

Fig. 2 An Implementation of Passive Code Review

3·2 Complementary Notation of Model Diagrams based

on Source Code

In Passive Code Review, information that we can ac-

quire from a model diagram is more abstract. This func-

tion provides a reviewer with more information from the

generated model diagrams of her source code by com-

plementing them with such abstracted information based

on her source code. In our generated flowchart diagrams,

process symbols are divided into three kinds of categories

such as Input, Output, and General process based on their

content of codes as shown in Figure 3, which are drawn

by a red line, green line, and blue line respectively as

shown in Figure 4. This categorization uses the follow-

ing lists of codes ready beforehand:readLine as ex-

amples of Input process, andSystem.out.print and

System.out.println as examples of Output process.

3·3 Divisional Association of Reviewer’s Source Code

with Model Diagrams

In Passive Code Review, a reviewer has to simultane-

ously browse a part of her source code on the left as well

as its generated model diagram on the right. Therefore,

Fig. 3 A Magnification of Passive Code Review

otherprocess
output
input

Browsing locationelse{BufferedReader br = new buf;String c=br.readLine();//comentString b=a+”@”;String c=a+”＊”;System.out.println(a);System.out.println(b);}
Blue line
Green line
Red line

Fig. 4 Complementary Notation of Model Diagrams based on Source
Code

this function needs to assist mutual complement of infor-

mation by assigning the same display color to each state-

ment of control flow such asfor , while , andif in both

her source code and its flowchart diagram and partially

emphasizing information on screen as shown in Figure 5.

3·4 Manifestation of System Behaviors such as Changing-

over of Reviewer’s Browsing Location

Our Passive Code Review system needs to manifest some

kind of timing for its abrupt system behaviors such as

changing-over a reviewer’s browsing location. Therefore,

this function enables a generated flowchart diagram to man-

ifest where the system is currently tracing and also expects

a reviewer to browse in her source code, and information

about the timing of changing-over her browsing location.

As shown in Figure 6, the right part of a process symbol

(rectangle) has a black line on the left and a gray line on

the right. The black line shows the codes that the system

has already loaded from a reviewer’s targeted source code,

while the gray line shows where the system is now tracing

and expects her to browse. When the gray line reaches the

end of the black line, the system changes over her brows-

ing location, expands the black line to the process symbols

of newly-loaded codes, and zero-initializes the gray line.

4 Proceedings of JAWS2012

END

System.out.print(----);}for(i=0;---------;----){for(j=0;j---------;----){..if(-------------){.....................}else{-----------}..}}---------------------

Browsing locationFlowchart diagram

Fig. 5 Divisional Association of Reviewer’s Source Code with Model
Diagrams

System.out.print(----...}else{System.out.print(----.. Timing of shift change

Browsing location

Fig. 6 Manifestation of System Behaviors such as Changing-over of
Reviewer’s Browsing Location

3·5 Browsing Location Handle in Model Diagrams

While code review combined with a model diagram,

this function to handle a reviewer’s browsing location in

the model diagram enables her to choose her browsing lo-

cation in her source code more freely. Our system has

not only passive functions but also this active function to

change over a reviewer’s browsing location in her source

code, adapted to her actively-clicked flowchart symbol in

its generated flowchart diagram, as shown in Figure 7.

3·6 Review-Time Admeasurement for Passive Code Re-

view

In Passive Code Review, this function to allow a re-

viewer to set her review time for her targeted source code

beforehand, could disambiguate the finish time of the code

review and resolve its crucial problem of time manage-

ment. Our system provides the following two kinds of

methods to set her review time as show in Figure 8: one

method to set it relatively based on the standard review

time by choosing from among multiplying factors (e.g.,

x1.5, x1, and x0.5), and another method to set it abso-

lutely by choosing from the list of review time periods

(e.g., 30sec, 1min, and 3min).

Browsing location

System.out.println(--);if(----------){---
-------------If(---------){……………..}else{……………a++;

Before clicking

After clicking

Browsing location

Fig. 7 Browsing Location Handle in Model Diagrams

Fig. 8 Review-Time Admeasurement for Passive Code Review

4. Evaluation and Discussion

This section evaluates and discusses our proposed “Pas-

sive Code Review” system, by showing the results of its

questionnaire surveys of 17 students of Computer Science.

4·1 Evaluation and Discussion of Implemented Func-

tions

The usefulness of implemented functions into our pro-

posed Passive Code Review system needs to be validated

based on reviewers’ subjective evaluations as an evalu-

ative criterion. In questionnaire surveys, the reviewers

(students) evaluated our system by five-grade evaluation

(i.e., 1:not useful, 2:little useful, 3:slightly useful, 4:use-

ful, 5:very useful) for each implemented function after

they had used the system. Figures 9 to 14 show the results

of the questionnaire surveys of the implemented functions.

While their horizontal axis denotes the five-grade evalua-

tion, their vertical axis denotes the count of reviewers (stu-

dents) for each evaluation for each implemented function.

And also Table 1 shows the average of evaluation for each

implemented function.

Passive Code Review with Automatically-Generated Model Diagram 5

Table 1 Average Evaluation for Each Implemented Function

Function Average

Model Diagram Update for Reviewer’s Browsing Location 4.00

Complementary Notation of Model Diagram based on Source Code 3.41

Divisional Association of Reviewer’s Source Code with Model Diagrams 4.35

Manifestation of System Behaviors such as Changing-over of Reviewer’s Browsing Location3.29

Browsing Location Handle in Model Diagrams 4.24

Review-Time Admeasurement for Passive Code Review 3.12

024
6810

not useful little useful slightly useful useful very usefulCount of Rev
iewers

Evaluation
Fig. 9 Evaluation of “Model Diagram Update for Reviewer’s Browsing

Location”

024
6810

not useful little useful slightly useful useful very usefulCount of Rev
iewers

Evaluation
Fig. 10 Evaluation of “Complementary Notation of Model Diagram

Based on Source Code”

024
6810

not useful little useful slightly useful useful very usefulCount of Rev
iewers

Evaluation
Fig. 11 Evaluation of “Divisional Association of Reviewer’s Source

Code with Model Diagrams”

In comparison with average evaluation of functions, the

functions of “Divisional Association of Reviewer’s Source

Code with Model Diagram” and “Browsing Location Han-

dle in Model Diagram” have high evaluation value. They

seem to be useful functions for a reviewer to understand

her browsing location by using both her targeted source

code and its generated flowchart diagram.

In contrast, the function of “Complementary Notation

of Model Diagram based on Source Code” does not seem

to be evaluated as useful. This reason is because the func-

tion of a reviewer’s partial complement is hard for her

while simultaneously browsing both parts of her targeted

source code and its generated flowchart diagram. In this

case of the questionnaire surveys, the reviewers (students)

024
6810

not useful little useful slightly useful useful very usefulCount of Rev
iewers

Evaluation
Fig. 12 Evaluation of “Manifestation of System Behaviors such as

Changing-over of Reviewer’s Browsing Location”

024
6810

not useful little useful slightly useful useful very usefulCount of Rev
iewers

Evaluation
Fig. 13 Evaluation of “Browsing Location Handle in Model Diagram”

024
6810

not useful little useful slightly useful useful very usefulCount of Rev
iewers

Evaluation
Fig. 14 Evaluation of “Review-Time Admeasurement for Passive Code

Review”

did not fully understand the association of three categories

of codes with three colors of lines for each process sym-

bol. However, the usefulness of the function would also

increase, when reviewers will use our proposed Passive

Code Review system over and over again, and have its

high literacy.

“Model Diagram Update for Reviewer’s Browsing Lo-

cation” is one of functions to associate a reviewer’s brows-

ing location based on the model diagram generated from

her source code. But it seems to be not appropriate func-

tion of our generated flowchart diagram for Passive Code

Review. In the questionnaire surveys, there is also a free-

space comment that reviewers need a scaling function of

flowchart diagram adapted to their browsing location.

6 Proceedings of JAWS2012

As low evaluated functions, “Review-Time Admeasure-

ment for Passive Code Review” is the worst, and “Mani-

festation of System Behaviors such as Changing-over Re-

viewer’s Browsing Location” is the second worst. This

reason seems to be because both functions do not directly

get involved with a reviewer’s browsing location in her

targeted source code.

We have implemented six kinds of novel functions into

the flowchart diagram generated from a reviewer’s targeted

source code, and evaluated the usefulness of the novel

model diagram. But it is hard not to feel that there are not

only appropriate functions but also inappropriate functions

for the implementation into flowchart diagrams. There-

fore, in the future, we will try to implement the additional

function that reviewers themselves can choose freely from

among the implemented functions into model diagrams.

4·2 Usefulness Evaluation of Model Diagrams in Pas-

sive Code Review

Figure 15 shows the evaluative results on the useful-

ness of flowchart diagrams in our proposed Passive Code

Review. It shows that most (15/17) reviewers gave them

higher evaluation than or equal to 3 (slightly useful) and

the average of evaluation is 3.71 (almost 4:useful). This

is the comprehensive evaluation of all functions imple-

mented into flowchart diagrams in this paper. Even if

our Passive Code Review system adopts only flowchart

diagrams as model diagrams referring to the reviewers’

comments, the future design of flowchart diagrams with

context-aware display styles can expect to be more useful

for reviewers because of its wide array of uses. And also

model diagrams could assist code review because code re-

view combined with model diagrams has received higher

evaluation than without them as shown in Figure 16.

4·3 Comparison of Passive and Active Code Reviews

Figure 17 compares the evaluations of our proposed Pas-

sive Code Review and the existing Active Code Review

after the reviewers used our system. Our current Passive

Code Review system assisted by model diagrams is not

enough useful compared with Active Code Review. How-

ever, our future system combined more appropriately with

model diagrams would become enough useful, because

several reviewers evaluate our current system as more use-

ful and it is useful to assist code review by model diagrams

regardless of whether the code review is passive or active.

0123
4567
8910

not useful little useful slightly useful useful very usefulCount of Rev
iewers

Evaluation
Fig. 15 Usefulness Evaluation of Flowchart Diagrams in Passive Code

Review

18%

41%23%
12% 6%

proposed methodslightly proposed methodno preferenceslightly existing methodexisting method
Fig. 16 Evaluation of Passive Code Review with vs. without Model

Diagrams 6% 18%
6%

29%
41% proposed methodslightly proposed methodno preferenceslightly existing methodexisting method

Fig. 17 Evaluation of Passive vs. Active Code Review

5. Proposal of Visual Support Functions

The most required function of Passive Code Review is

“Divisional Association of Reviewer’s Source Code with

Model Diagrams” as a result of the above-mentioned eval-

uation. And because there are some comments that it is a

bigger burden to watch both different displays at once in

the questionnaire surveys, our Passive Code Review re-

mains to require “Divisional Association of Reviewer’s

Source Code with Model Diagrams” and functions to sup-

port reviewers’ movement of observing point.

This section contrives visual support functions to make

it easy to simultaneously browse parts of her targeted source

code and its generated flowchart diagram, requests third

parties to rank the functions, and determines our future di-

rection of problems to be tackled as a result of the ranking.

Passive Code Review with Automatically-Generated Model Diagram 7

5·1 List of Ideas for Visual Support Functions

Each of 10 ideas for visual support functions for our

Passive Code Review system states a summary.

§ 1 Association Function for Colored Control Syntaxes
This function associates a branch control syntax (if-else)

in a reviewer’s targeted source code with its branch sym-

bol (diamond) in the generated flowchart diagram in a same

color (green) as shown in Figure 18.

inta;if(flag==true){System.out.println(“1”);else{System.out.println(“2”);}
Fig. 18 #1: Association Function for Colored Control Syntaxes

§ 2 Association Function for Colored Sets of Process
Syntaxes

This function associates a set of process syntaxes in a

reviewer’s targeted source code with its process symbol

(rectangle) in the generated flowchart diagram by setting

them in a same colored frame as shown in Figure 19.

inta;if(flag==true){System.out.println(“1”);else{System.out.println(“2”);}
Fig. 19 #2: Association Function for Colorised Agminate Process

Construction

§ 3 Association Function for Additional Effect to Col-
ored Sets of Process Syntaxes

This function has a display style similar to “Association

Function for Colored Sets of Process Syntaxes”, and sup-

ports reviewers’ view movement by color change (effect)

and shift sequentially following the flow of source code.

§ 4 Association Function for Setting Colored Balls
This function associates a set of process syntaxes in a

source code with its process symbol (rectangle) in the gen-

erated flowchart diagram by placing same colored balls at

their quaternary corners as shown in Figure 20.

§ 5 Association Function for Labeling in Alphabet
This function assigns an alphabetical label to a set of

process syntaxes and its corresponding process symbol

along the flow of source code as shown in Figure 21.

inta;if(flag==true){System.out.println(“1”);else{System.out.println(“2”);}
Fig. 20 #4: Association Function for Setting Colored Balls

inta;if(flag==true){System.out.println(“1”);else{System.out.println(“2”);}
a
b c

abc
Fig. 21 #5: Association Function for Labeling in Alphabet

§6 Association Function for Drawing Lines
This function draws lines from a set of process syntaxes

in a source code to its process symbol (rectangle) in the

generated flowchart diagram as shown in Figure 22.

inta;if(flag==true){System.out.println(“1”);else{System.out.println(“2”);}
Fig. 22 #6: Association Function for Drawing Lines

§7 Association Function for Blinking Lines
This function has a display style similar to “Association

Function for Drawing Lines”, and blinks drawn lines to

avoid the problem of frequent overlapping critical points

of flowchart diagram.

§8 Association Function for Gauges
This function associates a set of process syntaxes in a

source code with its process symbol (rectangle) in the gen-

erated flowchart diagram by setting a pair of temporally-

changing gauges as shown in Figure 23.

inta;if(flag==true){System.out.println(“1”);else{System.out.println(“2”);}
Fig. 23 #8: Association Function for Gauges

8 Proceedings of JAWS2012

§9 Support Function for Reviewer’s View Movement
This function supports a reviewer’s view movement by

setting a single colored ball of focal point to wander both

her targeted source code and the generated flowchart dia-

gram as shown in Figure 24.

inta;if(flag==true){System.out.println(“1”);else{System.out.println(“2”);}
Fig. 24 #9: Support Function for Reviewer’s View Movement

§ 10 Support Function for Reviewer’s View Movement
by Two Balls

This function supports a reviewer’s view movement by

setting two colored balls of focal point on each area of a

source code and the generated flowchart diagram, and they

move along the flow of source code as shown in Figure 25.

inta;if(flag==true){System.out.println(“1”);else{System.out.println(“2”);}
Fig. 25 #10: Support Function for Reviewer’s View Movement by Two

Balls

5·2 Questionnaire-based Evaluation of Proposed Vi-

sual Support Functions

This survey asks 11 undergraduate students studying

in Information Technology to answer a questionnaire of

comparing and ranking our proposed 10 kinds of visual

support functions by their effectiveness, and tabulates and

analyzes the ranking. Figure 26 shows the average of 11

ranks for each visual support function. The best function

with the highest average is “#2: Association Function for

Colored Sets of Process Syntaxes”, while the worst func-

tion with the lowest average was “#10: Support Function

for Reviewer’s View Movement by Two Balls”. And also

“#9: Support Function for Reviewer’s View Movement”,

which is a similar function to “#10: Support Function

for Reviewer’s View Movement by Two Balls”, showed

lower average. They (#9 & #10) were contrived to support

reviewers’ movement of observing point, but the ques-

tionnaire survey shows that functions to force reviewers’

movement of observing point are not effective.

Based on the result of this additional questionnaire sur-

vey, visual support functions need to be designed for Pas-

sive Code Review to understand reviewers’ intentions.1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 1 2 3 4 5 6 7 8 9 10
Avg. of Ran
ks

of Visual Support Function
Fig. 26 Average of Ranks of Visual Support Functions

6. Conclusion

This paper has proposed “Passive Code Review” to re-

view a targeted source code combined with its generated

model diagrams, as a novel method of code review for bal-

looning source code at software development sites. We

have proposed a novel method to give a reviewer high ef-

fects of code review within a limited amount of time, and

described its basic approach, requirements, and basic ar-

chitectonics. At the moment, we have already specified

the basic architectonics to subserve code review by com-

bining a flowchart diagram as a model diagram. By apply-

ing the basic architectonics to the other kinds of model di-

agrams, our proposed Passive Code Review system would

contribute a great deal to large-scale code review without

hearing from developers.

In the future, we try to increase the usefulness of Pas-

sive Code Review by combining not only flowchart dia-

grams but also various model diagrams. The first of our

next challenges is to study how to program an expression

of architectonics for class diagrams and an extraction of

design patterns for sequence diagrams.

♢ References♢

[Aksulu 10] Aksulu, A. and Wade, M.: A Comprehensive Review and
Synthesis of Open Source Research,Journal of the Association for
Information Systems, Vol. 11, pp. pp.576–656 (2010)

[Ferreire 10] Ferreire, A. L., Machado, R. J., Silva, J. G.,
Batista, R. F., Costa, L., and Paulk, M. C.: Proceedings of the 26th
IEEE International Conference on Software Maintenance,Machine
Learning(2010)

[Hourai 03] Hourai, H., Nadamoto, A., and Tanaka, K.: Passive
Browsing of Multiple Web Pages by the Talk Show Metaphor,IPSJ-
DBS Technical Report, Vol. 5, pp. pp.155–162 (2003)

[Laitenberger 02] Laitenberger, O.: A Survey of Software Inspection
Technologies,Handbook on Software Engineering and Knowledge
Engineering, Vol. 2, pp. pp.517–555 (2002)

[Remillard 05] Remillard, J.: Source Code Review Systems,IEEE
Software, Vol. 1, pp. pp.74–77 (2005)

