

Rethinking PBL as a Holistic Pedagogical Method
Is PBL applicable to develop learners’ self-awareness in software engineering education?

Hiroyuki Kameda, Taichi Nakamura, Akio Takashima, Shun Hattori

School of Computer Science

Tokyo University of Technology

Tokyo, Japan

{kameda, nakamura, takashima & hattori}@cs.teu.ac.jp

Abstract— This paper discusses PBL for first year software

education, paying attention to aspects of holistic learning, and

also proposes a new PLB course based on the discussion. The

PBL course was given to high school students to confirm

fundamental validity. The questionnaire method suggested that

PBL might be fundamentally useful to learn holistically.

Keywords-Education; Project-Based Learning; holistic

learning; software engineering education; awakening;

I. INTRODUCTION

Recently, software has been a social infrastructure that
takes an important role in our daily life. Many kinds of
software systems, i.e., air traffic control, network banking,
mobile phone, e-commerce, e-learning, ubiquitous home,
electronic books, and so on are one after another affirmatively
proposed, willingly created, widely distributed, and intensively
used all over the world by many people, while many
requirement changes are also dynamically required to those
systems according to the floating social needs which are
subject to social rapid progress. Due to these situations,
software industries strongly ask university students to reach
practical level, i.e., professional level when they graduate from
universities. This request is difficult for university teaching
staff to respond to so far.

On the other hand, some countries, e.g., Japan, face other
serious problems such as birthrate that has been rapidly
decreasing. For this reason, the era is coming soon that
universities admit all students' entrance to universities with no
entrance examination. This fact is also surely one of the very
reasons to accelerate reduction of learning motivation of
students and declination in academic abilities in Japan. In these
backgrounds in Japan, Japanese software companies strongly
demand universities to develop software engineers with a fairly
good amount of abilities needed by industry.

But as we know, there is a seriously big gap between what
universities teach to students of computer science and what
industry demands of them. At the same time, unfortunately the
number of young people who want to study software
engineering has been rapidly decreasing in Japan, because they
do not like mathematics, physics etc. Moreover, the incentive
of studying IT in high school students is recently decreasing,
especially in Japan. To cope with these serious problems,
Nakamura, Kameda et al. [1] proposed and have been studying

a new version of software engineering education named
"Tangible Software Education" since 2007 with the support of
national grant of Japan, where the meaning of the word
tangible in this project is defined as if it were visualized
enough to be controlled manually through mouse or keyboard.
One of products of the project is a new course of software
engineering education designed for novice software developers.
This course was applied to university students with a PBL
(Project-based Learning) method, and fundamental validity
was confirmed by educational evaluation (Kirkpatrick’s Four-
Level Evaluation) [2].

In this paper, we report another application of the new
software learning course for novice programmers to high
school students who participated in a science summer camp
held at our university this summer, in order to evaluate the PBL
course from mainly two view-points; one is to know if the
course is really valid and the other is to prove its effectiveness
as a teaching method of holistic learning teaching for novice.

II. PREVIOUS PROGRAMMING METHODS AND THEIR

PROBLEMS

A. Previous programming education for first year students

Usually, first year university students who want to study
computer science, especially software, have courses such as
courses of computer literacy and programming mainly focused
on grammar of programming languages and how to use
software developing environments. A few years ago, these
courses were useful for students to learn about computers and
programming at the same time. But as it was mentioned before
in this paper, software is now too large-scale, complex, and
changeable to create and manage well. The previous software
course is now indeed obsolete.

B. Currently challenging trials and thier problems

To cope with the problems mentioned above, many
interesting learning methods have been proposed since around
2000.

Scratch [3] is an example designed for novice programming,
e.g., children learning the essence of programming. In Scratch
learners write simple programs to control software robots. In
this sense, Scratch seems similar to the educational
programming language LOGO. But in Scratch, the world

This project is supported by Tangible Software Education and Research
as part of the Program promoting the leveling of private university academic

research by Japanese government.

978-1-61284-641-5/11/$26.00 ©2011 IEEE
2011 IEEE Global Engineering Education Conference (EDUCON) – "Learning Environments and Ecosystems in Engineering Education"

April 4 - 6, 2010, Amman, Jordan

Page 758

where software robots move around is more beautifully visual
and more fantastic, so that young learners are attracted. Alice
[4] is also the same kind of educational software. In Alice,
program is constructed as a sequence of English statements
(commands). This feature is effective for every novice
programmer to learn what/how programming is intuitively with
no complexity. Indeed these educational software are very
attractive and seem effective, but only to people who just learn
the basics of programming. They are not useful for university
students of computer science who should be IT professionals in
the future to learn knowledge and skills of software production.

Robocode [5] is an educational software for students of
schools of IT. Robocode provides a Java programming
environment and learners learn programming by writing simple
programs of robot battle games. Robot battle is fun for young
boys but some do not like such battles. Moreover, writing
programs of Robocode is indeed difficult for most of the
novice students. For these reasons Robocode is not appropriate
for FYE (First Year Education) in universities.

BlueJ [6] is another type of educational software, which is
designed to learn Object-oriented programming in Java, but
quite different from Robocode. BlueJ provides a new type of
programming learning. Classes are displayed in UML class
diagrams, instances of the classes can be displayed in a pane
visually, and also Java source codes can be edited in editor
windows. For example, functions to show field parameters and
their values dynamically are also incorporated in BlueJ to help
users figure out sequences of run time actions of programs
users are writing. But this educational software is rather
difficult for novices to use properly. Easier ones are needed for
first year education.

Greenfoot [7, 8] is the very educational software, aiming at
realizing an introductory education of high school students.
The educational software is designed for programming
beginners easily to create programs especially such as games
and simulations, based on an educational theory, the Kolb's
circle of learning [9]. Moreover it also adopts the object-
oriented programming method, so that teachers only prepare
software resources, e.g., fundamental classes, some set of
images and sounds. Learners reuse theses software resources
(programs and content) for themselves elaborately. For these
reasons, we adopted Greenfoot as an environment and method
of game software creation, but a single problem was still open:
"how to teach".

C. Project-based learning (PBL)

Indeed some software is useful for FYE (first year
education of universities), but outcomes of the education with
use of such software depends on learning methods. As
especially software is large-scale, complex, and changeable as
mentioned before, appropriate teaching methods and theories
should be selected accordingly. One of such good learning
methods is PBL (Project-based learning) [10]. The root of PBL
lies in American culture of education: experimental, hands-on,
student-directed learning, i.e., "doing a project" is the best way
to learn. Current PBL, which is originally based on Problem-
based learning in the medical field, influenced by a revolution
in learning theory partially based on neuroscience and

psychology research, which have extended cognitive and
behavioral models of learning. In the last decades PBL has
been developing rapidly and now is applied to many
educational fields. One of them is the field of software
engineering education, and various good outcomes are reported.
And many of them are concentrated on how to learn knowledge
and skills well. While applying PBL to software education, we
realized PLB is useful not only to learn knowledge and skills of
the relevant subjects, but also to realize what should be learned
to learn the subject adequately. From this point of view, we
tried to examine if PBL is effective to holistic learning. This
paper reports the results of our experience of the examination.

III. OVERVIEW OF OUR NEW PBL-BASED SOFTWARE

LEARNING COURSE THROUGH GAME PRODUCING [11]

A. Overview of Instructional design of our PBL course

Our new course we propose is designed, according to the
principle of tangible software education, to cover whole
processes of software development. Details are as follows:

(1)Learning objectives: Learners figure out software
development processes holistically by quasi-experiencing all
processes through game software production. At the same time
learners realize what kind of knowledge and skills should be
acquired from the industrial point of view, and also understand
why and what they have to study more from now on.

(2)Expected outcomes: Learners' awareness makes learning
goals in the future more clear than before, and learners have
more motivation to learn.

(3)Intended learners: University students with some Java
Programming experience. Main target is student of second
year at university. They are expected to know the basics of
programming and programming language Java. Object-
oriented programming is not expected to have been studied
already.

(4)Learning style: In industry software is produced as a
project by a groupware. For this reason, this course adopts the
learning style of PBL (Project-Based Learning). At first,
learners are divided into some groups of five members. Every
group is regarded as a virtual company. Every member
contributes to game software production as a virtual company’s
staff. They discuss and decide what game to make voluntarily
and with responsibility. Everything is strictly decided for
themselves.

(5)Teaching staff: A teacher and 8 TAs (Teaching
Assistants) for about 80 learners. Each TA is a meta-project
manager to manage 2 groups. In our course, a pair of TA
manages 4 groups together.

(6)Teaching materials: A textbook is originally prepared
for PBL by creating game software from upper process through
lower process up to sales presentation. Details are in the next
section.

(7)Learning environment: We adopted object-oriented
programming language Java, because Java is one of the most
important programming languages in industry. Moreover,
Greenfoot is adopted as a programming development

978-1-61284-641-5/11/$26.00 ©2011 IEEE
2011 IEEE Global Engineering Education Conference (EDUCON) – "Learning Environments and Ecosystems in Engineering Education"

April 4 - 6, 2010, Amman, Jordan

Page 759

environment, and we regard it as a learning environment,
because learners can learn programming in a way of the “class
first approach” as is proposed in BlueJ, where class first
approach is a kind of learning method: “class design first,
coding next.” Every learner installs Greenfoot on their own
personal computers all by themselves.

(8)Time schedule: The course we propose consists of 6
lessons. Learning term is 6 week long, and one day is 4.5 hour
long.

1) First Day:
 Preparing software developing environment by installing

Greenfoot, Java SDK, drawing software GIMP, etc.

2) Second Day:
Learn how to use the software Greenfoot by creating some

trivial game programs. In this phase, programming is not done
in groups but individually. This phase is not PBL but self-
learning as usual courses.

3) Third Day:
 Virtual company is established by group to produce game

software. This phase is PBL. Everything is decided by every
team. Teaching staff gives only advice to virtual company as
project mentor. They start to discuss what game to make, how
to make it. Work schedule is also managed for themselves.

4) Fourth Day and Fifth Day:
 Game production process goes on, while documents of

planning, proposal, use case, software designs etc. are written
as the occasion arises. When producing game software, many
subtasks should be done, e.g., scenario writing, BGM music
composing, picture drawing etc. They are assigned to virtual
company staff according to their interests, qualification and
readiness.

5) Last Day:
 Game software is presented to other virtual company

member not in technical terms but in commercial terms. After
everything is over, all processes are reported by every virtual
company with all documents written.

B. Design of Textbook

As a teaching material, a Textbook is prepared for learners
to be accustomed to programming environment Greenfoot and
to take PBL activity. The textbook starts with cover page,
introduction, aims of the course, learning goals and scheme of
the course. Then part I Preparing Greenfoot, part II trivial game
production, and Part III game software creation project (PBL
phase). Later comes references including URL and then
samples of style files of many kinds of documents.

C. Examples of production

Here show some examples of learners’ production is shown
in [11]. In our course, learners are students of computer science
at a technical university, so most games are shooting games,
chasing game like packman (Figure 1) or adventure games like
super Mario.

Figure 1. An example of games made by sutents, which is a chasing game

that a mouse controlled by a human player goes for a piece of cheese, while

cats are chasing the mouse to attack.

D. Result of evaluation in our first PBL course trial

To evaluate the fundamental validity of our proposal course,
assessment was done by the questionnaire method. Figure 2
shows an evaluation result of attractiveness, which shows
fundamental validity of the PLB course. More details are
shown in [11].

Figure 2. A Result of PBL in terms of Attractiveness.

E. Discussion

As the Figure 2 shows, our PBL course is so far so good, in
a sense that most of students are satisfied with the PBL course.
We also have an impression that students were willing to learn
programming. On the other hand while we were giving the
PBL course to university students, we have found students not
only learned the content of the relevant subject, but also found
out what should have been learned more to learn the subject
more deeply at the same time. That is, our PBL course can
make students learn the content and develop learners’ self-
awareness. So we planned to apply the PBL course to high
school students, who in general have little amount of
knowledge and skills of programming. From this point of view,
we applied to our PBL course for high school students who
participate in a summer science camp in this summer.

IV. NEW TRIAL IN A SUMMER SIENCE CAMP

A. Overview of Summer Science Camp

Every year in summer and winter, Japan Science
Foundation gives a collection of experimental activities for

of students

Scores

poor good

n=90

978-1-61284-641-5/11/$26.00 ©2011 IEEE
2011 IEEE Global Engineering Education Conference (EDUCON) – "Learning Environments and Ecosystems in Engineering Education"

April 4 - 6, 2010, Amman, Jordan

Page 760

high school students of age 15-18 to learn scientific topics
during a few days. This year we proposed a summer science
camp course which was accepted by Japan Science Foundation.
The course title was "Let's enjoy game software creation -
Experimental introduction to software development."

B. Design of the course in the Summer Science Camp

The course was designed to give chances to high school
students with little amount of programming knowledge and
skills to learn what software development is. Of course we also
planned to encourage students to go to IT fields in universities
by showing attractiveness of software production. To
accomplish this goal, we designed the PBL course to produce
any game software which they wanted to make. PBL was
adopted as a learning method. An outline of the course is
presented in C.

C. Overview of Execution of the PBL course

1) Learning objectives:
 Principally the same as in 3.1

2) Expected outcomes:
To give students the opportunity to learn what software

development is, and what they should learn more in high
school to study IT at university. Moreover, to attract students to
go to IT fields in the future.

3) Intended learners:
 High school students with little amount of programming

knowledge and skills who have appetite for learning game
software development. In this summer science camp, 20 high
school students participated in the camp. Half was male
students. Only two male students were familiar with
programming, but others were novice programmers.

4) Learning style:
Same as in 3.1. But TA helped writing programs because

students have poor knowledge and skills of game programming.
In this sense, the principle "Everything is strictly decided by
themselves" was violated partially. 20 students were grouped
into five teams of four members each.

5) Teaching staff:
A single professor, two assistant professors, and two TA

(Teaching Assistants). One TA was master candidate of the
first year, other TA doctoral candidate of the third year. All
staff is familiar with programming in Java, Greenfoot
environment and PBL.

6) Teaching materials:
Adopted the same as in 3.2. But software installation was

omitted and a supplemental lecture was given to let the
students know what software development is and why they
learn by a special learning method PBL. The Lectures took
about 20 minutes.

7) Learning environment:
Same as in 3.1, but all software was installed by teaching

staff.

8) Time schedule:

a) 1st Day

 13:00～13:15 Opening ceremony

 13:15～14:00 Introductory lecture

To get accustomed to computer and software
environment

 14:00～15:00 Basic training (1)

Learning how to use Greenfoot individually

 15:00～15:50 Basic training (2)

Learning how to use Greenfoot individually

 15:50～16:00 Intermediate add-up

 16:00 ～ 16:20 Lecture to know what software

development processes more deeply

Title: Why software is important in our society?, and
what people are needed in IT industry?

 16:20～17:00 Explanation of PBL and establishment

of virtual companies

Organization of a team as a virtual company,
assigning roles to team staff, and preparation for the
following day’s activities

 17:00～18:30 Welcome party

 18:30～19:00 Move to Hotel

 19:00～22:00 Meeting to make friends

b) 2nd Day

 9:00～ 9:20 Explanation of the day's activities and

confirmation of what they had learned on the
preceeding day

 9:20～10:00 Game producing (Game planning and

writing a draft of plan document)

 10:00～11:00 Game producing (finish writing plan

document)

 11:00 ～ 12:00 Game producing (specification

document, external design)

 12:00～13:30 Lunch

 13:30～14:30 Game producing (resource producing:

drawing image and composing music etc.)

 14:30～17:00 Game producing (coding and etc.)

 17:00～17:30 Move to Hotel

 18:00～19:00 Dinner

 19:00～22:00 Meeting

c) Last Day

 9:00～11:00 Game producing (Level design and

etc.)

978-1-61284-641-5/11/$26.00 ©2011 IEEE
2011 IEEE Global Engineering Education Conference (EDUCON) – "Learning Environments and Ecosystems in Engineering Education"

April 4 - 6, 2010, Amman, Jordan

Page 761

 11:00～12:00 Preparation of presentation

 13:30 ～ 15:00 Presentation with game

demonstration

 15:00～16:00 Playing Games

 16:00～16:40 General add-up

What we have learned so far and what should we
learn more from now on

 16:40～17:00 Awarding and closing ceremony

D. Outcome of the PBL course

1) Products as outcomes
High school students could manage to produce games, such

as shooting games, obstacle-avoiding game, typing game, and
goods searching games. Only typing games are well produced.
Students seem to be short of time to produce other types.
Probably more time should be allotted for these activities in the
future.

E. Evaluation

To evaluate the fundamental validity of our proposal

course, assessment was done by the questionnaire method as

described below:

(1) Aims: To investigate the fundamental validity of the

proposed course mainly in terms of what learners can

learn.

(2) Subjects: 20 students (20 out of 20 answered.)

(3) Method: questionnaire method with 18 items.

Questions are as follows;

Q1. Level of learning content (m=4.3, σ=0.9)

Q2. Interest of learning content (m=4.8, σ=0.4)

Q3. Freshness of content (m=4.8, σ=0.4)

Q4. Teaching materials are well described

 (m=3.6, σ=0.7)

Q5. Satisfaction of teaching materials (m=3.7, σ=0.9)

Q6. Amount of explanation time (m=3.0, σ=0.6)

Q7. Amount of work time (m=2.0, σ=0.9)

Q8. Amounts of work (m=3.3, σ=1.3)

Q9. Total number of work days (m=1.7, σ=0.7)

Q10. Quality of teachers’ teaching ability

(m=4.5, σ=0.9)

Q11. Quality of TAs’ teaching ability (m=4.4, σ=0.9)

Q12. Classroom (m=4.1, σ=0.9)

Q13. Overall satisfaction (m=4.7, σ=0.5)

Q14. Comments (free description)

Q15. What can you learn? (free description)

Q16. What do you know about yourself?

 (free description)

Q17. Learner’s effort (m=4.2, σ=0.9)

Q18. Accomplishment level (m=,3.8 σ=0.8)

Q19. Programming level of yourself (m=1.4, σ=0.8),

where score ranges from 1 to 5, i.e., from very poor,

poor, so so, good, very good, respectively.

(4) Results: In general, the content in the summer science

camp was difficult for high school students, but most

students learned what software development

processes are and also what they should learn more at

high school to study IT at university.

Questionnaire method shows PBL can be also useful

to learn not only content of subject, but also to aware

of what should be learned more/better, e.g.,

a) I could take a role in my team of even first-met

friends.

b) I have found leadership and making friends very

important.

c) I have to learn mathematics and English more.

d) I am poor at PC, so I have to try to learn PC

more.

e) Programming is easier than I thought ever.

f) Other people did not dislike me so much.

g) I have ability of writing document.

h) I found I am shy, I have to conquer it.

i) I could express myself, etc.

V. CONCLUSIONS

In this paper, we proposed and discussed a new software
learning method using PBL through game production. PBL is
generally regarded as one of outstanding learning methods, on
the other hand, we pointed out PBL is also useful for learners
to learn not only learning materials but also to develop
learners’ self-awareness, e.g., why do we learn the content?,
what should we know further more? and so on.

ACKNOWLEDGMENT

We thank Tangible Software Engineering Education
Project staff and students of Thought and Language laboratory
of Tokyo University of Technology, especially Hiroshi
Maruyama of doctoral candidates in the 3

rd
 year.

REFERENCES

[1] T. Nakamura, “What’s Tangible Software Engineering Education?,” 1st
Int. Symp. Tangible Software Engineering Education, STANS09, Tokyo,
2009, pp.1-8.

[2] D. L. Kirkpatrick and J. D. Kirkpatrick, Evaluating Training Programs:
The Four Leves, Berrett-Koehler, 2006.

[3] J. L. Ford, Scratch Programming for Teens, Course Technology, 2008.

[4] W. P. Dann et al., Learning to Program with Alice, Pearson Prentice
Hall, NJ, 2008.

[5] Robocode. Available: http://robocode.sourceforge.net/

[6] D. J. Barnes and M. Kölling, Objects First With Java: A Practical
Introduction Using BlueJ, Prentice Hall, 2008.

[7] P. Henriksen, A Direct Interaction Tool for Software Engineering
Education, M.S. Thesis, University of Southern Denmark, 2004.

[8] M. Kölling, Introduction to Programming with Greenfoot, Prentice Hall,
2010.

[9] Reiner Consulting, Kolb-Learning Cycle, Available:
http://www.reinierconsulting.com/kolb.html.

[10] Project Based Learning, 2nd ed., BIE, CA, 2003.

[11] H. Kameda, “PBL-based first year education course of learning software
engineering for novice software programmers through game software
production,” in Proc. IADIS2010, e-learning2010, Freiburg, 2010.

978-1-61284-641-5/11/$26.00 ©2011 IEEE
2011 IEEE Global Engineering Education Conference (EDUCON) – "Learning Environments and Ecosystems in Engineering Education"

April 4 - 6, 2010, Amman, Jordan

Page 762

	contribution1303_b

